Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (3): 12-21    DOI: 10.19952/j.cnki.2096-5052.2024.03.02
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于PIV技术的浅埋暗挖施工扰动诱发地表塌陷模型试验研究
黄阜,申勇斌,张敏,王勇涛,杨云强,朱睿
长沙理工大学土木工程学院, 湖南 长沙 410114
Model test study on surface collapse induced by underground excavation disturbance based on PIV technique
HUANG Fu, SHEN Yongbin, ZHANG Min, WANG Yongtao, YANG Yunqiang, ZHU Rui
School of Civil Engineering, Changsha University of Science &
Technology, Changsha 410114, Hunan, China
下载:  PDF (8323KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 浅埋暗挖施工诱发地表塌陷的发生机理和极限状态下的破坏模式尚不清楚。针对这一研究现状,利用基于粒子图像测速技术(particle image velocimetry, PIV)的缩尺模型试验,模拟砂土和Ⅴ级围岩中浅埋隧道的暗挖施工过程并利用PIV技术对暗挖隧道施工过程中围岩变形的图片进行分析,获得暗挖施工扰动诱发地层变形的位移云图。通过分析暗挖施工扰动诱发地表变形特征和渐进演变规律,总结极限状态下不同地层中暗挖隧道施工诱发地表塌陷的破坏面形状和塌陷范围。利用极限分析上限定理和变分原理推导得到暗挖施工诱发拱顶地层塌陷的破坏面方程并绘制出塌落面图形。将模型试验得到的暗挖施工诱发拱顶地层塌陷的范围与理论计算结果进行对比,验证了本研究模型试验结果的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄阜
申勇斌
张敏
王勇涛
杨云强
朱睿
关键词:  浅埋暗挖  模型试验  PIV技术  地表塌陷  对比验证    
Abstract: The mechanism of surface subsidence induced by shallow buried excavation construction and the failure mode under ultimate state were not unclear. In view of this situation, a scaled model experiment based on particle image velocimetry(PIV)was conducted to simulate the construction process of shallow buried tunnels in sandy soil and Ⅴ-grade surrounding rock. PIV technology was used to analyze the deformation images of the surrounding rock during the construction process of the tunnel, and to obtain displacement cloud maps of geological deformation induced by construction disturbance. By analyzing the characteristics and gradual evolution of surface deformation induced by underground excavation construction disturbance, the shape and range of the failure surface and collapse induced by underground excavation tunnel construction in different strata under the limit state were summarized.The equation of the failure surface induced by the collapse of the arch top strata during underground excavation construction was derived by using the upper limit theorem of limit analysis and variational principle, and the collapse surface graph was drawn.The validity of the model test results was verified by comparing the range of collapse induced by underground excavation construction in the arch crown strata obtained from the model test with the theoretical calculation results.
Key words:  underground excavation    model test    PIV technique    surface collapse    comparison validationReceived: 2024-4-24    Revised: 2024-06-16    Accepted: 2024-07-02    Published: 2024-09-20
发布日期:  2024-09-20     
中图分类号:  TU94+1  
基金资助: 国家自然科学基金面上资助项目(52278395)
作者简介:  黄阜(1983— ),男,湖南岳阳人,教授,博士生导师,博士,主要研究方向为隧道与城市地下工程. E-mail:hfcsust@csust.edu.cn
引用本文:    
黄阜,申勇斌,张敏,王勇涛,杨云强,朱睿. 基于PIV技术的浅埋暗挖施工扰动诱发地表塌陷模型试验研究[J]. 隧道与地下工程灾害防治, 2024, 6(3): 12-21.
HUANG Fu, SHEN Yongbin, ZHANG Min, WANG Yongtao, YANG Yunqiang, ZHU Rui. Model test study on surface collapse induced by underground excavation disturbance based on PIV technique. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(3): 12-21.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I3/12
[1] 李鹏飞, 勾宝亮, 朱萌, 等. 基于镜像法的隧道地表沉降时间效应计算方法[J]. 岩土力学, 2022, 43(3): 799-807. LI Pengfei, GOU Baoliang, ZHU Meng, et al. A calculation method of the time-dependent behavior for tunneling-induced ground settlement based on virtual image technique[J]. Rock and Soil Mechanics, 2022, 43(3): 799-807.
[2] ZHANG D M, CHEN C C, ZHANG D M. Ground surface movement of shallow-buried large-sectional tunnel under full-ring pipe-jacking roof and ground freezing[J]. Tunnelling and Underground Space Technology, 2022, 127: 104600.
[3] LU D C, KONG F C, DU X L, et al. Fractional viscoelastic analytical solution for the ground displacement of a shallow tunnel based on a time-dependent unified displacement function[J]. Computers and Geotechnics, 2020, 117: 103284.
[4] ZHANG Z G, HUANG M S, PAN Y T, et al. Analytical prediction of time-dependent behavior for tunneling-induced ground movements and stresses subjected to surcharge loading based on rheological mechanics[J]. Computers and Geotechnics, 2021, 129: 103858.
[5] 李涛, 崔远, 曹英杰, 等. 岩-土复合地层暗挖隧道施工引起地表沉降计算方法[J]. 中国铁道科学, 2020, 41(2): 73-80. LI Tao, CUI Yuan, CAO Yingjie, et al. Calculation method of surface settlement caused by construction of mining tunnel in rock-soil composite strata[J]. China Railway Science, 2020, 41(2): 73-80.
[6] ZHANG Z G, HUANG M S, PAN Y T, et al. Time-dependent analyses for ground movement and stress field induced by tunnelling considering rainfall infiltration mechanics[J]. Tunnelling and Underground Space Technology, 2022, 122: 104378.
[7] YANG G B, ZHANG C P, MIN B, et al. Complex variable solution for tunneling-induced ground deformation considering the gravity effect and a cavern in the strata[J]. Computers and Geotechnics, 2021, 135: 104154.
[8] TU H L, ZHOU H, QIAO C S, et al. Excavation and kinematic analysis of a shallow large-span tunnel in an up-soft/low-hard rock stratum[J]. Tunnelling and Underground Space Technology, 2020, 97: 103245.
[9] 张成平, 岳跃敬, 蔡义. 管线渗漏水范围对浅埋隧道围岩变形和破坏的影响[J]. 岩石力学与工程学报, 2015, 34(2): 392-400. ZHANG Chengping, YUE Yuejing, CAI Yi. Influence of pipeline leakage range on ground deformation and failure during shallow tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 392-400.
[10] 张成平, 岳跃敬, 王梦恕. 隧道施工扰动下管线渗漏水对地面塌陷的影响及控制[J]. 土木工程学报, 2015, 48(增刊1): 351-356. ZHANG Chengping, YUE Yuejing, WANG Mengshu. Influence and control of pipeline leakage on ground collapse under tunnel construction disturbance[J]. China Civil Engineering Journal, 2015, 48(Suppl.1): 351-356.
[11] 王海涛, 闫帅, 王梦恕, 等. 管线渗水条件下隧道施工诱发地层变位研究[J]. 铁道工程学报, 2018, 35(3): 57-62. WANG Haitao, YAN Shuai, WANG Mengshu, et al. Research on the displacement of strata induced by tunnel construction under the condition of pipeline leakage[J]. Journal of Railway Engineering Society, 2018, 35(3): 57-62.
[12] 马芳平, 李仲奎, 罗光福. NIOS模型材料及其在地质力学相似模型试验中的应用[J]. 水力发电学报, 2004, 23(1): 48-51. MA Fangping, LI Zhongkui, LUO Guangfu. NIOS model material and its use in geo-mechanical similarity model test[J]. Journal of Hydroelectric Engineering, 2004, 23(1): 48-51.
[13] 张强勇, 李术才, 郭小红, 等. 铁晶砂胶结新型岩土相似材料的研制及其应用[J]. 岩土力学, 2008, 29(8): 2126-2130. ZHANG Qiangyong, LI Shucai, GUO Xiaohong, et al. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J]. Rock and Soil Mechanics, 2008, 29(8): 2126-2130.
[14] 董金玉, 杨继红, 杨国香, 等. 基于正交设计的模型试验相似材料的配比试验研究[J]. 煤炭学报, 2012, 37(1): 44-49. DONG Jinyu, YANG Jihong, YANG Guoxiang, et al. Research on similar material proportioning test of model test based on orthogonal design[J]. Journal of China Coal Society, 2012, 37(1): 44-49.
[15] 任大瑞, 刘保国, 史小萌. 相似材料力学性质影响因素试验研究[J]. 北京交通大学学报, 2016, 40(6): 19-24. REN Darui, LIU Baoguo, SHI Xiaomeng. Experimental study on the factors affecting mechanical properties of similar material[J]. Journal of Beijing Jiaotong University, 2016, 40(6): 19-24.
[16] 臧万军, 夏欢, 梁亚茹. 潮兜1号隧道Ⅳ级围岩相似材料配比试验[J]. 福建工程学院学报, 2023, 21(1): 35-43. ZANG Wanjun, XIA Huan, LIANG Yaru. Proportioning test of similar materials for grade Ⅳ surrounding rock in Chaodou Tunnel No.1[J]. Journal of Fujian University of Technology, 2023, 21(1): 35-43.
[17] 李恺航,刘佳诚,陈发样.基于正交试验的千枚岩相似材料配比研究[J]. 公路与汽运,2024,40(2):130-134.[18] 周威扬,袁荣涛,杨景川,等.基于正交实验的西北地区弱膨胀性围岩相似材料配比研究[J]. 铁道勘察,2024,50(2):64-70. ZHOU Weiyang, YUAN Rongtao, YANG Jingchuan, et al. Research on the ratio of similar materials of weakly expansive surrounding rocks in northwest china based on orthogonal experiments[J]. Railway Investigation and Surveying, 2024, 50(2):64-70.
[19] HUANG F, ZHANG M, JIANG Z. Collapse mode of rock mass induced by a concealed Karst cave above a deep cavity[J]. Journal of Central South University, 2019, 26(7): 1747-1754.
[1] 高搏, 龙建平, 吴恺, 骆建军. 海相地层浅埋暗挖隧道水平旋喷桩超前支护地层变形规律分析[J]. 隧道与地下工程灾害防治, 2023, 5(1): 64-73.
[2] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[3] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[4] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[5] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[6] 周勇, 李召峰, 左志武, 王川, 王钰鑫, 林春金, 张新, 张乾青, 姚望, 王凯. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4(1): 38-47.
[7] 张姣龙, 高一民, 张建, 周浩, 潘野, 柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[8] 李荣建, 李浩泽, 白维仕, 王磊, 张瑾. 潜在滑动面对隧道衬砌承载特性影响的模型试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(4): 1-8.
[9] 张治国, 张洋彬, 王志伟, 方蕾, 马少坤, 师敏之, 魏纲. 类矩形截面隧道开挖诱发邻近管线变形模型试验与数值模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 85-96.
[10] 李兆平, 史磊磊. 北京地区暗挖地铁车站结构设计方法研究进展综述[J]. 隧道与地下工程灾害防治, 2019, 1(3): 14-21.
[11] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn