1. School of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; 2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; 3. Dalian Mechsoft Co., Ltd., Dalian 116000, Liaoning, China; 4. China Railway Construction Bridge Engineering Bureau Group 3rd Engineering Co., Ltd., Shenyang 110043, Liaoning, China
摘要 对隧道工程中的地质灾害进行总结,通过对真实破裂过程分析方法(realistic failure process analysis,RFPA)在隧道工程模拟中的相应应用进行综述,得到以下主要结论:在隧道工程施工中,隧道工程的主要地质灾害包括固体地质灾害、准流体地质灾害和流体地质灾害3大类;RFPA数值计算方法在与隧道工程施工相关的岩石力学及破坏特性获取、开挖条件下的隧道破坏模拟、层理岩体隧道开挖模拟、动力条件下隧道破坏模拟、深部围岩分区破裂模拟以及渗流作用下隧道稳定性分析等方面都得到了广泛的应用;目前,RFPA数值计算方法已经在计算精度、计算规模、计算速度、大规模求解过程的并行计算和数值计算云平台建设等方面取得了重大进展。随着技术进步和程序开发的不断深入,RFPA数值计算方法会在隧道工程模拟方面取得更为广泛的应用。
Abstract: In this review, the tunnel engineering geological disasters were firstly reported, and then the simulation applications of tunnel engineering related to RFPA were summarized. The following main conclusions were that during the construction of tunnel engineering, the tunnel engineering of main geology disaster types including solid geological disasters, quasi fluid geological disasters and fluid geological disasters; the RFPA numerical methods in tunnel engineering construction related rock mechanics and failure characteristics of acquiring, under the condition of excavation of tunnel damage simulation, bedding rock tunnel excavation simulation, dynamic tunnel under the condition of failure simulation, simulation and partition of deep surrounding rock fracture under the action of seepage tunnel stability analysis were carried out in such aspects as widespread application; at present, RFPA has made important progress in the aspects of calculation accuracy, calculation scale and calculation speed, parallel computation of large-scale solution process, construction of numerical computing cloud platform and so on. It is believed that with the continuous development of technology and program, RFPA numerical calculation method will be more widely used in tunnel engineering simulation.
陈湘生,徐志豪,包小华,等. 中国隧道建设面临的若干挑战与技术突破[J].中国公路学报,2020,33(12):1-14. CHEN Xiangsheng, XU Zhihao, BAO Xiaohua, et al. Challenges and technological breakthroughs in tunnel construction in China[J]. China Journal of Highway and Transport, 2020, 33(12): 1-14.
[2]
田四明,王伟,巩江峰. 中国铁路隧道发展与展望(含截至2020年底中国铁路隧道统计数据)[J]. 隧道建设(中英文),2021,41(2): 308-325. TIAN Siming, WANG Wei, GONG Jiangfeng. Development and prospect of railway tunnels in China(including statics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308-325.
[3]
罗刚. 中国10 km以上超长公路隧道统计[J]. 隧道建设(中英文),2019,39(8): 1380-1383. LUO Gang. Statistics of super-long highway tunnels with length over 10 km in Chinese Mainland[J].Tunnel Construction, 2019, 39(8): 1380-1383.
张建,梁庆国,王永刚,等. 黄土隧道底鼓机理分析与防治技术[J].隧道与地下工程灾害防治,2020, 2(1): 84-90. ZHANG Jian, LIANG Qingguo, WANG Yonggang, et al. Deformation mechanism and prevention of floor heave in loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(1): 84-90.
[6]
仇文革,黄海昀,闫飞跃,等.基于能量原理的上覆饱水砂层隧道突水灾变[J].隧道与地下工程灾害防治,2021,3(1): 1-11. QIU Wenge, HUANG Haiyun, YAN Feiyue, et al. A disaster with water inrush based on energy theorem in tunnels under saturated sandy stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 1-11.
[7]
陈湘生,徐志豪,包小华,等. 隧道病害监测检测技术研究现状概述[J]. 隧道与地下工程灾害防治,2020, 2(3): 1-12. CHEN Xiangsheng, XU Zhihao, BAO Xiaohua, et al. Overview of research on tunnel defects monitoring and detection technology[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 1-12.
[8]
张奇华,张煜,李利平,等. 块体理论在地下洞室围岩稳定分析中的应用进展[J].隧道与地下工程灾害防治,2020, 2(4): 9-18. ZHANG Qihua, ZHANG Yu, LI Liping, et al. Advances in application of block theory to stability analysis of rock mass surrounding caverns[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(4): 9-18.
[9]
李利平,贺鹏,石少帅,等. 隧道施工过程巨石垮塌研究现状、问题与对策研究[J]. 隧道与地下工程灾害防治,2019, 1(3): 22-31. LI Liping, HE Peng, SHI Shaoshuai, et al. Research status,problems and countermeasures of boulder collapse during tunnel construction[J].Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 22-31.
LI S C, LI S C, ZHANG Q S, et al. Predicting geological hazards during tunnel construction[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(3): 232-242.
[12]
李术才,刘斌,李树忱,等. 中基于激发极化法的隧道含水地质构造超前探测研究[J]. 岩石力学与工程学报,2011, 30(7):1297-1309. LI Shucai, LIU Bin, LI Shuchen, et al. Study of advanced detection for tunnel water-bearing geological structures with induced polarization method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7):1297-1309.
[13]
卢松,李苍松,吴丰收,等. HSP法在引汉济渭 TBM 隧道地质预报中的应用[J]. 隧道建设(中英文),2017, 37(2): 236-241. LU Song, LI Cangsong, WU Fengshou, et al. Application of HSP(horizontal sonic profiling)sound wave reflection method to geological prediction of TBM tunnel of Hanjiang river-Weihe river water diversion project[J]. Tunnel Construction, 2017, 37(2): 236-241.
[14]
严金秀. HSP中国隧道工程技术发展40年[J]. 隧道建设(中英文),2019,39(4): 537-544. YAN Jinxiu. Achievements and challenges of tunneling technology in China over past 40 years[J]. Tunnel Construction, 2019, 39(4): 537-544.
[15]
TU H L, QIAO C S, HAN Z M. Elastic-brittle-plastic analysis of the radial subgrade modulus for a circular cavity based on the generalized nonlinear unified strength criterion[J]. Tunnelling and Underground Space Technology, 2018, 71: 623-636.
[16]
TU H L, ZHOU H, QIAO C S, et al. Excavation and kinematic analysis of a shallow large-span tunnel in an up-soft/low-hard rock stratum[J]. Tunnelling and Underground Space Technology, 2020, 97: 103245.
[17]
HUANG M S, LI S, YU J, et al. Continuous field based upper bound analysis for three-dimensional tunnel face stability in undrained clay[J]. Computers and Geotechnics, 2018, 94: 207-213.
[18]
于丽,吕城,汪主洪,等. 上伏溶洞下深埋隧道塌落破坏的上限分析[J]. 中国公路学报,2021,34(4): 209-219. YU Li, LÜ Cheng, WANG Zhuhong, et al. Upper bound analysis of collapse failure in deep buried tunnel under upper cave[J]. China Journal of Highway and Transport, 2021, 34(4): 209-219.
[19]
QIN C B, CHIAN S C. 2D and 3D stability analysis of tunnel roof collapse in stratified rock: a kinematic approach[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 269-277.
[20]
FUKUDA D, NIHEI E, CHO S H, et al. Development of a numerical simulator for 3-D dynamic fracture process analysis of rocks based on hybrid FEM-DEM using extrinsic cohesive zone model[J]. Journal of the Society of Materials Science, Japan, 2020, 69(3): 228-235.
[21]
TANG C M. Numerical simulation of progressive rock failure and associated seismicity[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 249-261.
[22]
TANG C A, LIU H, LEE P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression: part I: effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 555-569.
[23]
TANG C A, THAM L G, LEE P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression: part II: constraint, slenderness and size effect[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 571-583.
[24]
巫锡勇,魏有仪,罗健. 湘西地区陡山沱组黑色岩石风化与物理力学性质的变化特征[J]. 水文地质工程地质,2003,30(1): 9-12. WU Xiyong, WEI Youyi, LUO Jian. Weathering degree and properties of Doushantuo group black rock in the west of Hunan Province[J]. Hydrogeology and Engineering Geology, 2003, 30(1): 9-12.
[25]
杜立杰,洪开荣,王佳兴,等. 深埋隧道TBM施工岩爆特征规律与防控技术[J].隧道建设(中英文), 2021, 41(1): 1-15. DU Lijie, HONG Kairong, WANG Jiaxing, et al. Rockburst characteristics and prevention and control technologies for tunnel boring construction of deep-buried tunnels[J]. Tunnel Construction, 2021, 41(1): 1-15.
[26]
薛景沛. 敞开式TBM安全快速通过隧洞强岩爆地层施工技术: 以引汉济渭工程秦岭隧洞岭南TBM施工段为例[J]. 隧道建设(中英文), 2019, 39(6): 989-997. XUE Jingpei. Construction technology of open TBM safely and rapidly pass through strong rockburst formation of Lingnan section on Qinling Tunnel of Hanjiang river-Weihe river water conveyance project[J]. Tunnel Construction, 2019, 39(6): 989-997.
[27]
NAJI A, REHMAN H, EMAD M, et al. Static and dynamic influence of the shear zone on rockburst occurrence in the headrace tunnel of the Neelum Jhelum Hydropower Project, Pakistan[J]. Energies, 2019, 12(11): 2124.
[28]
XIA Y J, ZHANG C Q, ZHOU H, et al. Mechanical behavior of structurally reconstructed irregular columnar jointed rock mass using 3D printing[J]. Engineering Geology, 2020, 268: 105509.
[29]
HAO X J, FENG X T, YANG C X, et al. Analysis of EDZ development of columnar jointed rock mass in the Baihetan diversion tunnel[J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1289-1312.
[30]
马俊杰,李天斌,曾鹏,等. 基于岩爆烈度预测的川藏铁路线路比选研究[J]. 铁道标准设计, 2020,64(3): 23-30. MA Junjie, LI Tianbin, ZENG Peng, et al. Route selection of Sichuan-Tibet railway based on the prediction of rockburst intensity[J]. Railway Standard Design, 2020, 64(3): 23-30.
[31]
汪珂. 深埋隧道岩爆预测及防治技术现状综述[J]. 隧道建设(中英文), 2021, 41(2): 212-224. WANG Ke. Overview of state-of-art of rockburst prediction and prevention techniques for deep-buried tunnels[J]. Tunnel Construction, 2021, 41(2): 212-224.
[32]
于远祥, 王京滨, 柯达, 等. 深埋隧道拉裂-滑移式片帮力学机理研究[J]. 公路交通科技, 2019, 36(12): 94-103. YU Yuanxiang, WANG Jingbin, KE Da, et al. Study on mechanical mechanism of cracking-sliding rib spalling in deep tunnel[J]. Journal of Highway and Transportation Research and Development, 2019, 36(12): 94-103.
[33]
刘国锋,冯夏庭,江权,等. 白鹤滩大型地下厂房开挖围岩片帮破坏特征、规律及机制研究[J]. 岩石力学与工程学报, 2016, 35(5): 865-878. LIU Guofeng, FENG Xiating, JIANG Quan, et al. Failure characteristics, laws and mechanisms of rock spalling in excavation of large-scale underground powerhouse caverns in Baihetan[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 865-878.
[34]
MARTIN C D, CHRISTIANSSON R. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 219-228.
[35]
张华磊, 王连国, 秦昊. 回采巷道片帮机制及控制技术研究[J]. 岩土力学, 2012,33(5): 1462-1466. ZHANG Hualei, WANG Lianguo, QIN Hao. Study of spalling mechanism and control techniques of mining roadway[J]. Rock and Soil Mechanics, 2012, 33(5): 1462-1466.
[36]
王兆会, 杨敬虎, 孟浩. 大采高工作面过断层构造煤壁片帮机理及控制[J]. 煤炭学报, 2015,40(1): 42-49. WANG Zhaohui, YANG Jinghu, MENG Hao. Mechanism and controlling technology of rib spalling in mining face with large cutting height passing through fault[J]. Journal of China Coal Society, 2015, 40(1): 42-49.
赵勇, 刘建友, 田四明. 深埋隧道软弱围岩支护体系受力特征的试验研究[J]. 岩石力学与工程学报, 2011, 30(8): 1663-1670. ZHAO Yong, LIU Jianyou, TIAN Siming. Experimental study of mechanical characteristics of support system for weak surrounding rock of deep tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1663-1670.
[39]
何发亮. 隧道施工地质灾害与致灾构造及其致灾模式[J]. 现代隧道技术, 2019, 56(增刊1): 138-143. HE Faliang. Geological hazards and disaster-causing structures in tunnel construction and disaster-causing modes of disaster-causing structures[J]. Modern Tunnelling Technology, 2019, 56(Suppl.1): 138-143.
[40]
何满潮, 袁越, 王晓雷, 等. 新疆中生代复合型软岩大变形控制技术及其应用[J].岩石力学与工程学报, 2013, 32(3): 433-441. HE Manchao, YUAN Yue, WANG Xiaolei, et al. Control technology for large deformation of Mesozoic compound soft rock in Xinjiang and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 433-441.
[41]
陶志刚, 任树林, 王丰年, 等. 高地应力软岩隧道围岩大变形NPR锚索控制方法研究[J]. 隧道建设(中英文), 2020, 40(增刊2): 82-92. TAO Zhigang, REN Shulin, WANG Fengnian, et al. Research on NPR anchor cable support scheme for large deformation of surrounding rock in high-ground stress soft rock tunnel[J].Tunnel Construction, 2020, 40(Suppl.2): 82-92.
[42]
康红普, 林健, 吴拥政. 全断面高预应力强力锚索支护技术及其在动压巷道中的应用[J]. 煤炭学报, 2009, 34(9): 1153-1159. KANG Hongpu, LIN Jian, WU Yongzheng. High pretensioned stress and intensive cable bolting technology set in full section and application in entry affected by dynamic pressure[J]. Journal of China Coal Society, 2009, 34(9): 1153-1159.
[43]
周宗青, 李利平, 石少帅, 等.隧道突涌水机制与渗透破坏灾变过程模拟研究[J]. 岩土力学, 2020,41(11): 3621-3631. ZHOU Zongqing, LI Liping, SHI Shaoshuai, et al. Study on tunnel water inrush mechanism and simulation of seepage failure process[J]. Rock and Soil Mechanics, 2020, 41(11): 3621-3631.
[44]
钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012,31(10): 1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956.
[45]
罗依珍, 成国文, 尹利君, 等. 鸿图嶂隧道突涌水预测及防治措施[J]. 水文地质工程地质, 2020,47(5): 64-72. LUO Yizhen, CHENG Guowen, YIN Lijun, et al. Prediction and prevention of sudden water gushing in the Hongtuzhang tunnel[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 64-72.
[46]
肖广智. 我国几类特殊地质条件铁路隧道修建问题与对策概述[J].隧道建设(中英文), 2019, 39(11): 1748-1758. XIAO Guangzhi. Problems of railway tunnel construction under some special geological conditions in China and their countermeasures[J]. Tunnel Construction, 2019, 39(11): 1748-1758.
[47]
黄湘勇. 高温隧道热害防治措施研究[J]. 建设机械技术与管理, 2021,34(2): 64-67. HUANG Xiangyong. Study on prevention and control measures of heat damage in high temperature tunnel[J]. Construction Machinery Technology & Management, 2021, 34(2): 64-67.
[48]
陈文化. 高温高湿环境下高铁隧道洞口段热湿病害分析[J]. 铁道工程学报, 2016, 33(11): 102-105. CHEN Wenhua. Analysis of railway tunnel portal section thermal-humidity failure in high temperature and high humidity[J]. Journal of Railway Engineering Society, 2016, 33(11): 102-105.
[49]
王海洋, 赵树磊, 陈祥, 等. 我国隧道瓦斯事故统计及影响因素分析[J]. 中国安全科学学报, 2021,31(4): 34-40. WANG Haiyang, ZHAO Shulei, CHEN Xiang, et al. Statistics and influencing factors analysis of tunnel gas accidents in China[J]. China Safety Science Journal, 2021, 31(4): 34-40.
[50]
赵训, 李树清, 黄飞. 高速公路瓦斯隧道煤层超前探测与瓦斯检测方法[J]. 公路工程, 2019,44(4): 163-168. ZHAO Xun, LI Shuqing, HUANG Fei. Advanced detection of coal seam and methane detection in highway gas tunnel[J]. Highway Engineering, 2019,44(4): 163-168.
[51]
韩智铭, 刘庆宽, 王雪, 等. 岩体多裂纹扩展演化过程数值流形方法研究[J]. 工程力学, 2021,38(增刊1): 7-13. HAN Zhiming, LIU Qingkuan, WANG Xue, et al. Study on numerical manifold method for evolution process of multi-crack propagation in rock mass[J]. Engineering Mechanics, 2021, 38(Suppl.1): 7-13.
[52]
杨莹, 徐奴文, 李韬, 等. 基于RFPA3D和微震监测的白鹤滩水电站左岸边坡稳定性分析[J]. 岩土力学, 2018,39(6): 2193-2202. YANG Ying, XU Nuwen, LI Tao, et al. Stability analysis of left bank rock slope at Baihetan hydropower station based on RFPA3D software and microseismic monitoring[J]. Rock and Soil Mechanics, 2018, 39(6): 2193-2202.
[53]
李志超, 李连崇, 唐春安. 水平井定向射孔裂缝起裂与穿层特征数值分析[J]. 石油与天然气地质, 2015,36(3): 504-509. LI Zhichao, LI Lianchong, TANG Chun'an. Numerical analysis on hydraulic fracture initiation and penetration characteristics in directionally perforated horizontal wells[J]. Oil & Gas Geology, 2015, 36(3): 504-509.
[54]
李志超, 李连崇, 唐春安. 煤层底板陷落柱突水过程及其影响因素数值分析[J]. 煤矿安全, 2014,45(10): 162-165. LI Zhichao, LI Lianchong, TANG Chun'an. Numerical analysis of water inrush process for coal seam floor collapse column and related factors[J].Safety in Coal Mines, 2014, 45(10): 162-165.
[55]
夏英杰, 李连崇, 唐春安, 等. 基于峰后应力跌落速率及能量比的岩体脆性特征评价方法[J]. 岩石力学与工程学报, 2016,35(6): 1141-1154. XIA Yingjie, LI Lianchong, TANG Chun'an, et al. Rock brittleness evaluation based on stress dropping rate after peak stress and energy ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1141-1154.
[56]
夏英杰,李连崇,唐春安,等. 储层砂岩破坏特征与脆性指数相关性影响的试验及数值研究[J]. 岩石力学与工程学报, 2017,36(1): 10-28. XIA Yingjie, LI Lianchong, TANG Chun'an, et al. Experiment and numerical research on failure characteristic and brittleness index for reservoir sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 10-28.
[57]
HU J, XU N W. Numerical analysis of failure mechanism of tunnel under different confining pressure [J]. Procedia Engineering, 2011, 26(1):107-112.
[58]
HUANG Z P, TANG C A, CAI M. Numerical analysis of unloading-induced rock failure: insight into strainburst mechanism[J]. Indian Geotechnical Journal, 2018, 48(3): 558-563.
[59]
KONG X Y, CHEN X, TANG C A, et al. Study on large deformation control technology and engineering application of tunnel with high ground stress and weak broken surrounding rock[J]. Structural Engineering International, 2020: 1-9.
[60]
YU Q, TANG C A, LI L C, et al. Study on rockburst nucleation process of deep-buried tunnels based on microseismic monitoring[J]. Shock and Vibration, 2015:1-17.
[61]
黄志平, 赵文, 唐春安, 等. 不同层状结构岩体中隧洞开挖诱发岩爆机理研究[J]. 沈阳建筑大学学报(自然科学版), 2011,27(3): 442-450. HUANG Zhiping, ZHAO Wen, TANG Chun'an. Mechanism investigation of rockburst induced by tunnel excavation under layered structure conditions[J]. Journal of Shenyang Jianzhu University(Natural Science), 2011,27(3): 442-450.
[62]
钟波波, 李宏, 张永彬. 爆炸荷载作用下岩石动态裂纹扩展的数值模拟[J]. 爆炸与冲击, 2016,36(6): 825-831. ZHONG Bobo, LI Hong, ZHANG Yongbin. Numerical simulation of dynamic cracks propagation of rock under blasting loading[J]. Explosion and Shock Waves, 2016, 36(6): 825-831.
[63]
ZUO Y J, TANG C N, ZHU W C, et al. Numerical analysis of tunnel reinforcing influences on failure process of surrounding rock under explosive stress waves[J]. Journal of Central South University of Technology, 2008, 15(5): 632-638.
[64]
ZUO Y J, XU T, ZHANG Y B, et al. Numerical study of zonal disintegration within a rock mass around a deep excavated tunnel[J]. International Journal of Geomechanics, 2012, 12(4): 471-483.
[65]
梁正召, 龚斌, 吴宪锴, 等. 主应力对洞室围岩失稳破坏行为的影响研究[J]. 岩石力学与工程学报, 2015,34(增刊1): 3176-3187. LIANG Zhengzhao, GONG Bin, WU Xiankai, et al. Influence of principal stresses on failure behavior of underground openings[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl.1): 3176-3187.
[66]
赵蕾, 邬忠虎, 娄义黎, 等. 裂隙溶洞对隧道围岩稳定性的数值分析[J]. 江西水利科技, 2020,46(2): 100-105. ZHAO Lei, WU Zhonghu, LOU Yili, et al. Numerical analysis of the stability of the surrounding rock of the tunnel by the crack cave[J]. Jiangxi Hydraulic Science & Technology, 2020, 46(2): 100-105.
[67]
LI G, ZHAO Y, HU L H, et al. Simulation of the rock meso-fracturing process adopting local multiscale high-resolution modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104753.
[68]
李根, 唐春安, 李连崇. 水岩耦合变形破坏过程及机理研究进展[J]. 力学进展, 2012,42(5): 593-619. LI Gen, TANG Chun'an, LI Lianchong. Advances in rock deformation and failure process under water-rock coupling[J]. Advances in Mechanics, 2012, 42(5): 593-619.