Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (1): 71-77    DOI: 10.19952/j.cnki.2096-5052.2022.01.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
济南黄河隧道泥水盾构开挖面稳定性分析
石宗涛
(中铁十四局集团有限公司, 山东 济南 250101)
Stability analysis of slurry shield excavation face of Yellow River Tunnel in Jinan
SHI Zongtao
China Railway 14th Bureau Group Co., Ltd., Jinan 250101, Shandong, China
下载:  PDF (10985KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究济南黄河隧道大直径泥水平衡盾构穿越透水砂层施工过程中开挖面稳定性,根据工程典型节点的相关参数,建立三维计算模型,结合流固耦合理论,分析开挖面水体渗流、孔隙水压分布、开挖面土体位移和土体应力在不同泥水压力下的变化规律。结果表明:在泥水压力降低过程中,开挖面土体位移产生突变,即开挖面发生主动破坏,且位移向上扩展,失稳形态符合楔形模型。由于土拱的作用,土体的水平应力增大;在泥水压力减小的过程中,土拱区高度不断向地表扩展。通过分析开挖面土体位移和应力状态可知,保持开挖面稳定的泥水压力下限为水土压力的0.34倍,与既有试验结果相符,相较于未考虑流固耦合的情况大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石宗涛
关键词:  泥水盾构  数值模拟  开挖面稳定性  流固耦合  孔隙水压力    
Abstract: In order to study the stability of excavation face of Jinan Yellow River Tunnel with large diameter slurry balance shield passing through permeable sand layer, a three-dimensional calculation model was established according to the relevant parameters of typical nodes of the project. Combined with the fluid-soild coupling theory, the variation of water seepage, pore water pressure distribution, soil displacement and soil stress under different slurry pressure were analyzed. The results showed that the displacement of the excavation face changed suddenly in the process of the slurry pressure reducing. The excavation face was actively damaged, the displacement expanded upward, and the instability form conformed to the wedge model. Due to the effect of soil arch, the horizontal stress of the soil increased. In the process of slurry pressure decreasing, the height of soil arch area expanded to the surface. According to the analysis of the displacement and stress state of the soil on the excavation face, the lower limit of the slurry pressure to maintain the stability of the excavation face was 0.34 times of the water and soil pressure. It was consistent with the existing test results, which was larger than that without considering the fluid-solid coupling.
Key words:  slurry shield    numerical simulation    stability of excavation face    fluid-solid coupling    pore water pressure
收稿日期:  2021-12-10      修回日期:  2022-01-08      发布日期:  2022-03-20     
中图分类号:  U45  
基金资助: 中铁十四局集团有限公司科技开发资助项目(DDG-2019-B01)
作者简介:  石宗涛(1972— ),男,山东聊城人,高级工程师,主要研究方向为地下工程施工与管理. E-mail:LPL767906@163.com
引用本文:    
石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
SHI Zongtao. Stability analysis of slurry shield excavation face of Yellow River Tunnel in Jinan. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 71-77.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I1/71
[1] 肖鹏飞, 冯光福, 贾少东, 等. 近距离下穿车站富水圆砾地层盾构隧道开挖面稳定性研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 75-81. XIAO Pengfei, FENG Guangfu, JIA Shaodong, et al. Research on stability of excavation face of shield tunnel undercrossing station in water-rich gravel stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 75-81.
[2] 谢晓锋, 吴秋红, 刘恺. 考虑孔隙水压力影响的深埋盾构隧道开挖面稳定性分析[J]. 公路交通科技, 2017, 34(7): 94-100. XIE Xiaofeng, WU Qiuhong, LIU Kai. Analysis on excavation face stability of deep shield tunnel considering effect of pore water pressure[J]. Journal of Highway and Transportation Research and Development, 2017, 34(7): 94-100.
[3] 黄阜, 潘秋景, 张道兵. 孔隙水压力作用下盾构隧道开挖面支护力上限研究[J]. 工程力学, 2017, 34(7): 108-116. HUANG Fu, PAN Qiujing, ZHANG Daobing. Study on the upper bound solution of supporting pressure for shield tunnel face subjected to pore water pressure[J]. Engineering Mechanics, 2017, 34(7): 108-116.
[4] 闫军涛, 胡潇, 刘波. 上软下硬复合地层盾构隧洞开挖面稳定性研究[J]. 隧道建设(中英文), 2020, 40(2): 223-230. YAN Juntao, HU Xiao, LIU Bo. Stability of shield tunnel excavation face in upper-soft and lower-hard composite strata[J]. Tunnel Construction, 2020, 40(2): 223-230.
[5] LÜ X L, ZHOU Y C, HUANG M S, et al. Experimental study of the face stability of shield tunnel in sands under seepage condition[J]. Tunnelling and Underground Space Technology, 2018, 74: 195-205.
[6] 宋洋, 王韦颐, 杜春生. 砂-砾复合地层盾构隧道开挖面稳定模型试验与极限支护压力研究[J]. 岩土工程学报, 2020, 42(12): 2206-2214. SONG Yang, WANG Weiyi, DU Chunsheng. Model tests on stability and ultimate support pressure of shield tunnel in sand-gravel composite stratum[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2206-2214.
[7] ZHANG C P, HAN K H, ZHANG D L. Face stability analysis of shallow circular tunnels in cohesive-frictional soils[J]. Tunnelling and Underground Space Technology, 2015, 50: 345-357.
[8] 刘宇, 唐春安, 谢欣. 砂土地层盾构开挖面极限最小支护压力[J]. 东北大学学报(自然科学版), 2015, 36(3): 433-436. LIU Yu, TANG Chun'an, XIE Xin. Minimum supporting pressure of shield tunnel face in sandy grand[J]. Journal of Northeastern University(Natural Science), 2015, 36(3): 433-436.
[9] 王俊, 聂亮, 向龙, 等. 散粒体地层土压盾构掘进掌子面稳定性研究[J]. 铁道学报, 2018, 40(7): 128-135. WANG Jun, NIE Liang, XIANG Long, et al. Study on face stability of EPB shield tunnels in granular materials[J]. Journal of the China Railway Society, 2018, 40(7): 128-135.
[10] 王俊, 王闯, 何川, 等. 砂卵石地层土压盾构掘进掌子面稳定性室内试验与三维离散元仿真研究[J]. 岩土力学, 2018, 39(8): 3038-3046. WANG Jun, WANG Chuang, HE Chuan, et al. Heading stability analysis of EPB shield tunnel in sandy cobble ground using laboratory test and 3D DEM simulation[J]. Rock and Soil Mechanics, 2018, 39(8): 3038-3046.
[11] DE BUHAN P, CUVILLIER A, DORMIEUX L, et al. Face stability of shallow circular tunnels driven under the water table: a numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(1): 79-95.
[12] 乔金丽, 张义同, 高健. 考虑渗流的多层土盾构隧道开挖面稳定性分析[J]. 岩土力学, 2010, 31(5): 1497-1502. QIAO Jinli, ZHANG Yitong, GAO Jian. Stability analysis of shield tunnel face in multilayer soil with seepage[J]. Rock and Soil Mechanics, 2010, 31(5): 1497-1502.
[13] 马春景,姜谙男,江宗斌,等. 基于单元状态指标的盾构隧道水-力耦合模拟分析[J]. 岩土力学, 2017, 38(6): 1762-1770. MA Chunjing, JIANG Annan, JIANG Zongbin, et al. Hydro-mechanical coupled simulation and analysis of shield tunnel construction based on the zone state index[J]. Rock and Soil Mechanics, 2017, 38(6): 1762-1770.
[14] 黄振恩, 吴俊, 张洋, 等. 考虑流固耦合效应的盾构隧道开挖面稳定性研究[J]. 现代隧道技术, 2018, 55(5): 61-71. HUANG Zhenen, WU Jun, ZHANG Yang, et al. Analysis of the stability of the shield tunnel excavation face considering fluid-solid coupling effect[J]. Modern Tunnelling Technology, 2018, 55(5): 61-71.
[15] 陈仁朋, 尹鑫晟, 李育超, 等. 泥水盾构泥膜渗透性及其对开挖面稳定性影响[J]. 岩土工程学报, 2017, 39(11): 2102-2108. CHEN Renpeng, YIN Xinsheng, LI Yuchao, et al. Permeability of filter cake and its influence on face stability of slurry shield-driven tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2102-2108.
[16] 朱建明, 高林生, 巩晓花. 盾构开挖面极限支护力的简化计算公式[J]. 地下空间与工程学报, 2017, 13(4): 988-994. ZHU Jianming, GAO Linsheng, GONG Xiaohua. The simplified calculation formula of shield tunnel excavation surface limit supporting pressure[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(4): 988-994.
[17] 李君, 陈仁朋, 孔令刚. 干砂地层中盾构开挖面失稳模式及土拱效应试验研究[J]. 土木工程学报, 2011, 44(7): 142-148. LI Jun, CHEN Renpeng, KONG Linggang. Model test study of the failure mechanism of shallow tunnels in dry sands[J]. China Civil Engineering Journal, 2011, 44(7): 142-148.
[18] 陈相宇, 潘茜, 丁建军. 超孔隙水压力对盾构隧道极限支护力影响研究[J]. 隧道建设(中英文), 2021, 41(4): 597-603. CHEN Xiangyu, PAN Xi, DING Jianjun. Study on influence of excess pore water pressure on limit support pressure of shield tunnel[J]. Tunnel Construction, 2021, 41(4): 597-603.
[19] 朱伟, 秦建设, 卢廷浩. 砂土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土工程学报, 2005, 27(8): 897-902. ZHU Wei, QIN Jianshe, LU Tinghao. Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 897-902.
[20] 吕玺琳, 周运才, 李冯缔. 粉砂地层盾构隧道开挖面稳定性离心试验及数值模拟[J]. 岩土力学, 2016, 37(11): 3324-3328. LÜ Xilin, ZHOU Yuncai, LI Fengdi. Centrifuge model test and numerical simulation of stability of excavation face of shield tunnel in silty sand[J]. Rock and Soil Mechanics, 2016, 37(11): 3324-3328.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[3] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 关振长,周宇轩,吕春波,吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[6] 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[7] 李相兵,梁波,鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[8] 黄昕,谷冠思,张子新,李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[9] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[10] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[11] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[12] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[13] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[14] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[15] 赵高峰,徐志超,郝益民,扈晓冬,邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn