Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (3): 12-18    DOI: 10.19952/j.cnki.2096-5052.2023.03.02
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
道路隧道对软土场地的地震动影响
袁勇1,2,王祺1
1. 同济大学地下建筑与工程系, 上海 200092;2. 同济大学土木工程防灾国家重点实验室, 上海 200092
Influence of circular road tunnel on ground motion in soft soil
YUAN Yong1,2, WANG Qi1
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (5393KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用有限元动力数值模型研究软土场地在道路隧道影响下,地表地震动响应的变化规律。以场地条件、输入地震动、隧道埋深为变化量,取距隧道轴线水平距离的地表观测点响应为分析对象,以正则化加速度峰值、正则化加速度傅里叶谱幅值为场地动力影响指标,评价均匀场地和分层场地单一圆形道路隧道埋深对地表不同位置处的地震动响应特性。研究表明:均匀场地正则化加速度傅里叶谱随频率和隧道埋深呈周期性变化;分层软土场地中,随着观测点与隧道轴线距离增大和埋深增加,地表加速度正则化傅里叶谱幅值逐渐趋近于1,特别是在地表距离隧道轴线超过2.5D(D为隧道外径)或埋深超过2.5D后,加速度傅里叶谱幅值放大均小于20%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁勇
王祺
关键词:  道路隧道  地震  自由场  地表响应  傅里叶谱    
Abstract: This paper studied the seismic response law of ground motion influenced by built road tunnel at specific site conditions in soft soil. The acceleration response of ground at surface from tunnel axis horizontally was investigated when buried depth of a round tunnel and input motion of base excitation vary, in the given site, by means of numerical method. Regularized amplitude and its Fourier spectrum of acceleration response were established as a scale of the influence index. The results showed that the regularized Fourier spectrum amplitude of acceleration varies periodically with input frequency and buried depth if uniform site were supposed. Whereas at practical layered site, the regularized acceleration Fourier spectrum amplitude gradually approached constant 1.0 if the distance between the observation point and the tunnel axis increased and either if buried depth increased. Especially, when the distance between the surface and the tunnel axis exceeded 2.5D or the buried depth exceeded 2.5D, the maximum amplification of Fourier spectrum amplitude of acceleration was less than 20%.
Key words:  road tunnel    earthquake    free field    surface response    Fourier’s spectrum
收稿日期:  2023-04-27      发布日期:  2023-09-20     
中图分类号:  TU91  
基金资助: 国家自然科学基金-国际(地区)合作与交流资助项目(52061135112)
作者简介:  袁勇(1963— )男,云南景东人,教授,博士生导师,欧洲科学与艺术院院士,主要研究方向为地下工程动力灾变和服役性能的基础理论与工程应用. E-mail:yuany@tongji.edu.cn
引用本文:    
袁勇, 王祺. 道路隧道对软土场地的地震动影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 12-18.
YUAN Yong, WANG Qi. Influence of circular road tunnel on ground motion in soft soil. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 12-18.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I3/12
[1] PITILAKIS K, TSINIDIS G. Performance and seismic design of underground structures[J]. Earthquake Geotechnical Engineering Design, 2014: 279-340.
[2] 王国波,王亚西,陈斌,等.隧道-土体-地表结构相互作用体系地震响应影响因素分析[J].岩石力学与工程学报,2015,34(6):1276-1287. WANG Guobo, WANG Yaxi, CHEN Bin, et al. Analysis of factors influencing seismic responses of tunnel-soil-ground structural system[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1276-1287.
[3] ZHANG S, YUAN Y, LI C, et al. Effects of interior structure as double deck lanes on seismic performance of segmental linings[J].Tunnelling and Underground Space Technology, 2020, 103:103441.
[4] WU W, GE S, YUAN Y, et al. Seismic response of a cross interchange metro station in soft soil: physical and numerical modeling[J].Earthquake Engineering & Structural Dynamics, 2021(7):2294-2313.
[5] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范: GB50011—2010[S].北京: 中国建筑工业出版社, 2016.
[6] 同济大学,上海申通轨道交通研究咨询有限公司.地下铁道建筑结构抗震设计规范: DG/TJ08-2064—2009[S].上海:上海市建筑建材业市场管理总站,2009.
[7] 袁勇,王祺,蔡雪松.深厚软土场地道路隧道结构横向地震响应分析[J].中国市政工程,2020(5):79-83. YUAN Yong, WANG Qi, CAI Xuesong. Analysis of lateral seismic response of road tunnel structure in deep soft soil area[J]. China Municipal Engineering, 2020(5):79-83.
[8] 上海市隧道工程轨道交通设计研究院.道路隧道设计标准:DG/TJ 08-2033—2017[S]. 上海: 同济大学出版社, 2017.
[9] ZIENKIEWICZ O C, BICANIC N, SHEN F Q. Earthquake input definition and the transmitting boundary conditions[C] //Advances in Computational Nonlinear Mechanics. Vienna, Austria: Springer, 1989.
[10] 大崎顺彦. 地震动的谱分析入门[M]. 田琪, 译. 北京:地震出版社, 2008.
[11] KRAMER S L. Geotechnical earthquake engineering[M]. Washington, US: Pearson Education India, 1996.
[1] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[2] 王秋哲, 韩瑞, 白笑笑, 赵凯. 锁定回填下沉管隧道地震稳定性[J]. 隧道与地下工程灾害防治, 2023, 5(3): 71-77.
[3] 蒋宇静, 王兴达, 张学朋. 远场地震作用下跨断层深埋隧道结构的动力变形破坏特征[J]. 隧道与地下工程灾害防治, 2023, 5(3): 1-11.
[4] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[5] 林颖, 王国波, 施龙飞, 王建宁. 近距离空间曲线隧道群地震响应[J]. 隧道与地下工程灾害防治, 2023, 5(3): 86-92.
[6] 胡记磊, 张缜, 杨兵. 临空液化场地中地铁车站侧移及上浮规律[J]. 隧道与地下工程灾害防治, 2023, 5(3): 52-62.
[7] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[8] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[9] 禹海涛, 陈志伟. 基于连续-离散耦合方法的隧道开挖对近断层的影响机制研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 20-28.
[10] 耿萍,何川,张景,何悦,郭翔宇,陈枰良,王琦,杨琪,陈昌健. 盾构隧道地震响应试验研究[J]. 隧道与地下工程灾害防治, 2020, 2(2): 47-57.
[11] 禹海涛,王祺,刘涛. 均质地层长隧道纵向地震响应解析解[J]. 隧道与地下工程灾害防治, 2020, 2(1): 34-41.
[12] 董陇军,王钧晖,马举. 不同微震震源机制下地下硐室围岩响应及支护建议[J]. 隧道与地下工程灾害防治, 2019, 1(3): 68-76.
[13] 庄海洋, 付继赛, 朱明轩, 陈苏, 陈国兴. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析[J]. 隧道与地下工程灾害防治, 2019, 1(3): 57-67.
[1] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[2] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[3] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[4] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn