Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (2): 25-36    DOI: 10.19952/j.cnki.2096-5052.2024.02.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳氢曲线下大直径盾构隧道结构热力特性
闫治国1,2,王紫锐1,沈奕1,2*,刘康1
1.同济大学土木工程学院地下建筑与工程系, 上海 200092;2.同济大学土木工程防灾减灾全国重点实验室, 上海 200092
Thermal characteristics of a lining of a large diameter shield tunnel under hydrocarbon curve
YAN Zhiguo1,2, WANG Zirui1, SHEN Yi1,2*, LIU Kang1
1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China;
2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (11713KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以济南某大直径隧道为研究对象,研究盾构隧道在火灾作用下温度场分布、结构变形以及内力分布规律,建立盾构隧道的全尺寸数值分析模型,提出盾构隧道衬砌结构的热-力耦合分析方法。研究结果表明:火灾作用下,内表面受火区域的温度明显高于外表面,衬砌在距离内表面300 mm的部分基本不受火灾影响;衬砌结构受热发生膨胀变形,拱顶和拱底的变形逐渐降低,拱腰的水平方向变形不断增加,且部分管片接头明显张开;衬砌逐渐从受火面开始进入屈服状态,混凝土出现了应力重分布现象,连接处螺栓在高温作用下发生局部屈服;衬砌结构整体轴力下降并且弯矩剧烈增大,拱腰位置的弯矩比火灾前增大近一倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫治国
王紫锐
沈奕
刘康
关键词:  盾构隧道  数值模拟  火灾  热力耦合  力学特性    
Abstract: Based on a large-diameter tunnel in Jinan, a full-scale numerical analyze model was performed to analyze the temperature field distribution, structural deformation and internal force distribution of the shield tunnel in fire. A thermal-mechanical coupling analysis method for shield tunnel lining structures was proposed. The results showed that the temperature of the inner heating surface area was significantly higher than the outer surface during fire, 300 mm part of the lining from the inner heating surface was not affected by fire; The lining expanded due to the heating in fire; The deformation of the vault and the bottom gradually decreased, the horizontal deformation of the arch waist continued to increase, some segment joints were significantly opened under the effect of fire. The stress of lining entered the yield state from the heating surface, while stress redistribution developed and connection bolts partially yield; The axial force of overall structure decreased and the bending moment increased dramatically, the bending moment of the arch waist even doubled compared with before.
Key words:  shield tunnel    numerical simulation    fire    thermo-mechanical coupling    mechanical propertyReceived:2023-12-12    Revised:2024-03-05    Accepted:2024-03-26    Published:2024-06-20
发布日期:  2024-06-28     
中图分类号:  U43  
基金资助: 国家自然科学基金资助项目(52208401)
作者简介:  闫治国(1977— ),男,内蒙古兴和人,教授,博士生导师,博士,国家杰出青年基金获得者,主要研究方向为隧道及地下空防灾救援. E-mail: yanzguo@tongji.edu.cn. *通信作者简介:沈奕(1988— ),男,湖北十堰人,副研究员,博士,主要研究方向为地下空间防火. E-mail: shenyi@tongji.edu.cn
引用本文:    
闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
YAN Zhiguo, WANG Zirui, SHEN Yi, LIU Kang. Thermal characteristics of a lining of a large diameter shield tunnel under hydrocarbon curve. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 25-36.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I2/25
[1] 彭立敏,刘小兵,杜思村. 不同燃烧温度量级对隧道衬砌强度损伤程度的试验研究[J]. 铁道学报,1997,19(5): 88-95. PENG Limin, LIU Xiaobing, DU Sicun. Experimental study on damage degree of tunnel lining strength by different combustion temperature orders[J]. Journal of the China Railway Society, 1997, 19(5): 88-95.
[2] LUCCIONI B M, FIGUEROA M I, DANESI R F. Thermo-mechanic model for concrete exposed to elevated temperatures[J]. Engineering Structures, 2003, 25(6): 729-742.
[3] YASUDA F, ONO K, OTSUKA T. Fire protection for TBM shield tunnel lining[J]. Tunneling and Underground Space Technology, 2004,19(4/5):317.
[4] MAJORANA C E, PESAVENTO F, BRUNELLO P. Computational analysis of thermo-chemical and mechanical behaviour of tunnels during fire[J].Structures and Materials, 2003, 12: 365-375.
[5] 崔军, 邵宏, 李刚. 隧道火灾后衬砌混凝土受损分析[J]. 中国市政工程, 2006(6): 64-65. CUI Jun, SHAO Hong, LI Gang. On damaged lining concrete after tunnel fire[J]. China Municipal Engineering, 2006(6): 64-65.
[6] 闫治国. 隧道衬砌结构火灾高温力学行为及耐火方法研究[D]. 上海: 同济大学, 2007. YAN Zhiguo. A study on mechanical behaviors and fireproof methods of tunnel lining structure during and after fire scenarios[D].Shanghai: Tongji University, 2007.
[7] 闫治国, 朱合华, 梁利. 火灾高温下隧道衬砌管片力学性能试验[J]. 同济大学学报(自然科学版), 2012, 40(6): 823-828. YAN Zhiguo, ZHU Hehua, LIANG Li. Experimental study on mechanical performance of lining segments in fire accidents[J]. Journal of Tongji University(Natural Science), 2012, 40(6): 823-828.
[8] 过镇海,时旭东. 钢筋混凝土的高温性能试验及其计算[M].北京:清华大学出版社.
[9] 高润东, 李向民, 许清风, 等. 遭受高温混凝土中性化机理试验研究[J]. 建筑结构, 2014, 44(9): 72-74. GAO Rundong, LI Xiangmin, XU Qingfeng, et al. Experimental research on neutralization mechanisms of concrete suffered from high temperature[J]. Building Structure, 2014, 44(9): 72-74.
[10] 翟子泰, 王强, 朱凯, 等. 隧道火灾后衬砌混凝土抗压强度的超声检测[J]. 消防科学与技术, 2019, 38(2): 229-233. ZHAI Zitai, WANG Qiang, ZHU Kai, et al. Ultrasonic test of compressive strength of concrete lining after tunnel fire[J]. Fire Science and Technology, 2019, 38(2): 229-233.
[11] 陈春红, 朱平华, 陈世洲. 隧道火灾下气凝胶复合混凝土强度经时变化[J]. 常州大学学报(自然科学版), 2020, 32(3): 86-92. CHEN Chunhong, ZHU Pinghua, CHEN Shizhou. Study on strength variation of aerogel composite concrete exposed to tunnel fire[J]. Journal of Changzhou University(Natural Science Edition), 2020, 32(3): 86-92.
[12] 李忠友, 刘元雪, 姚志华, 等. 火灾作用下隧道结构力学响应及稳定性分析[J]. 防灾减灾工程学报, 2021, 41(1): 159-166. LI Zhongyou, LIU Yuanxue, YAO Zhihua, et al. Stability assessment and mechanics response of tunnels subjected to fire load[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1): 159-166.
[13] 李鹏, 宋文超, 罗亦洲. 不同燃烧物及防护下隧道火灾特征调查与分析[J]. 四川建筑, 2022, 42(2): 349-352. LI Peng, SONG Wenchao, LUO Yizhou. Investigation and analysis of tunnel fire characteristics under different combustibles and protection[J]. Sichuan Architecture, 2022, 42(2): 349-352.
[14] PARK S H, OH H H, SHIN Y S, et al. A case study on the fire damage of the underground box structures and its repair works[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 328.
[15] 闫治国, 朱合华, 张建军. 火灾对隧道衬砌结构的损害及防范措施研究[J]. 地下空间与工程学报, 2006, 2(4): 683-687. YAN Zhiguo, ZHU Hehua, ZHANG Jianjun. A study on fire damage to tunnel lining and fire- control measures[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(4): 683-687.
[16] 闫治国, 朱合华. 隧道衬砌结构火灾安全及高温力学行为研究[J]. 地下空间与工程学报, 2010, 6(4): 695-700. YAN Zhiguo, ZHU Hehua. Study on fire safety and mechanical behaviors of tunnel lining under high temperature[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(4): 695-700.
[17] 朱合华, 沈奕, 闫治国. 火灾下大直径盾构隧道结构力学特性有限元分析[J]. 地下空间与工程学报, 2012, 8(增刊1): 1609-1614. ZHU Hehua, SHEN Yi, YAN Zhiguo. Finite element analysis of structural mechanical characteristics of large diameter shield tunnel under fire[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(Suppl.1): 1609-1614.
[18] 沈奕. 火灾下隧道结构温度特性及力学行为分析[J]. 现代隧道技术, 2016, 53(6): 80-88. SHEN Yi. Analysis of the temperature characteristics and mechanical behaviors of tunnel structures in fires[J]. Modern Tunnelling Technology, 2016, 53(6): 80-88.
[19] 习阳. 钢壳混凝土组合结构火灾高温力学行为研究[D]. 重庆: 重庆交通大学, 2021. XI Yang. Mechanical behavior ofa composite structure with steel-shell and concrete under high temperature of fire[D].Chongqing: Chongqing Jiaotong University, 2021.
[20] 王明年,胡萧越,唐雄俊,等.大直径盾构铁路隧道火灾温度荷载及结构内力特性研究[J].现代隧道技术,2021,58(1):1-9. WANG Mingnian, HU Xiaoyue, TANG Xiongjun, et al. Study on temperature loads and structural internal force characteristics of large-diameter shield-driven railway tunnels in a fire scenario[J]. Modern Tunnelling Technology, 2021, 58(1): 1-9.
[21] European Committee for Standardization. Design of concrete structures: part 1-2: general rules: structural fire design:EN 1992-1-2[S]. London, Britain: British Standards Institution, 2004.
[22] 潘东. 火灾作用下大直径盾构隧道衬砌力学性能和损伤规律研究[D]. 北京: 北京交通大学, 2018. PAN Dong. Study on mechanical properties and damage laws of large diameter shield tunnel lining under fire scenario[D]. Beijing: Beijing Jiaotong University, 2018.
[1] 范传刚,盛子琼,熊胜,栾蝶. 降雨与纵向通风作用下隧道火灾烟气蔓延及分层特性试验研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 37-45.
[2] 戴开来,王峰. 曲线型公路隧道防灾通风设计问题探讨[J]. 隧道与地下工程灾害防治, 2024, 6(2): 76-83.
[3] 李炎锋,苏枳赫. 地铁区间隧道火灾热环境演化与疏散安全研究综述[J]. 隧道与地下工程灾害防治, 2024, 6(2): 1-12.
[4] 郭志国,李益锌,周令剑,张一恒,叶瑀伋. 公路隧道火灾应急技术研究现状与展望[J]. 隧道与地下工程灾害防治, 2024, 6(2): 13-24.
[5] 黄震,叶张骞,张嘉伟,彭子茂,严展硕. 膨胀型防火涂料对装配式框架隧道耐火性影响[J]. 隧道与地下工程灾害防治, 2024, 6(2): 46-58.
[6] 王宏超,胡军,周永强,付晓东. 二次衬砌施作时机对盾构隧道纵向力学性能的影响分析[J]. 隧道与地下工程灾害防治, 2024, 6(2): 99-112.
[7] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[8] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[9] 吴珂,周倩,陈茗,曹颖,孙峰,朱凯. 交通隧道火灾概率的动态量化研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 59-65.
[10] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[11] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[12] 孙齐昊, 舒计城, 范森, 柳献. 降水与回灌水抢险作用机制的试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(4): 33-46.
[13] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[14] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[15] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[1] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[2] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[3] WANG Qiuzhe, HAN Rui, BAI Xiaoxiao, ZHAO Kai. Seismic stability of immersed tunnel under locked backfill[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 71 -77 .
[4] HAO Junsuo, LIU Junfeng, LIU Hao, ZHAO Mingfan. Inducement and prevention technology of secondary disasters of water and mud inrush in tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 81 -92 .
[5] LIU Run, HUANG Xuanzhi, YUAN Yu, MA Pengcheng. Study of soil degradation effects on offshore wind turbine with large-diameter pile foundation[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 56 -63 .
[6] TIAN Ruiduan, MO Guanwang, LI Xiang. Optimization on the over/under-excavation of flat and super-large cross-section tunnel with drill and blast method[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[7] FAN Chuangang, SHENG Ziqiong, XIONG Sheng, LUAN Die. Experimental study on smoke movement and stratification characteristics of tunnel fire under the effect of rainfall and longitudinal ventilation[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 37 -45 .
[8] DAI Kailai, WANG Feng. Discussion on disaster prevention ventilation design for a curved road tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 76 -83 .
[9] HAN Guiwu, GUO Shutai, ZHOU Rou. Research and application of coal mine roadway oil storage technology system[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[10] ZENG Changnü, WANG Zizheng, CAO Shuoqian, REN Lei. Engineering performance of flowable backfill soil based on shield muck[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 1 -8 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn