Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (4): 33-46    DOI: 10.19952/j.cnki.2096-5052.2023.04.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
降水与回灌水抢险作用机制的试验研究
孙齐昊1,舒计城2,范森1,柳献1*
1.同济大学土木工程学院地下建筑与工程系, 上海 200092;2.中铁十四局集团大盾构工程有限公司, 江苏 南京 211800
Experimental study on the mechanism of dewatering and rewatering for emergency response
SUN Qihao1, SHU Jicheng2, FAN Sen1, LIU Xian1*
1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China;
2. China Railway 14th Corporation Mega Shield Construction Engineering Co., Ltd., Nanjing 211800, Jiangsu, China
下载:  PDF (26796KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于自行设计的缩尺模型试验装置与模型隧道,通过开展模型试验,重现不同地层涌水涌砂事故中降水与回灌水抢险过程,通过对侵蚀地层的流场、地应力场、位移场和速度场的分析,研究降水与回灌水抢险作用机制。研究表明:降水与回灌水抢险的作用机理是通过改变渗漏过程中的水头差与渗流速度等参数来降低地层渗流侵蚀的发展速度;降水与回灌水抢险中,平衡渗漏点内外的水头差后,地层能形成稳定土拱,削弱渗流流速后土拱不再失稳发展;粉土地层的渗透系数较砂土地层小,降水与回灌水后地下水压力变化将出现明显滞后,实际抢险中可以合理提高降水与回灌水幅度,加快抢险措施的响应速度。研究结论可以为隧道渗漏险情的现场处理提供理论参考与指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙齐昊
舒计城
范森
柳献
关键词:  盾构隧道  涌水事故  降水  回灌水  抢险机理    
Abstract: Based on the self-designed reduced-scale model test device and model tunnels, the model test which simulated the emergency response process of dewatering and rewatering in different strata were carried out. Through the analysis of the flow field, earth stress field, displacement field, and velocity field of the eroded stratum, the mechanism of dewatering and rewatering in the emergency was studied. Through the study, it was pointed out that: the mechanism of dewatering and rewatering was to decrease the development speed of seepage erosion in the stratum by changing the parameters such as water height difference and seepage velocity in the process of seepage; in the process of dewatering and rewatering, after balancing the water height difference inside and outside the seepage point, the stratum could form a stable soil arch, and the soil arch would no longer be destabilized after weakening the seepage flow velocity;the permeability coefficient of silt layer was smaller than that of sand layer, and the change of groundwater pressure after dewatering and rewatering would have obvious delay phenomenon, thus the magnitude of dewatering and rewatering could be reasonably increased in the actual emergency rescue to speed up the response speed of measures.The conclusion of the study could provide theoretical reference and guidance for the on-site treatment of tunnel leakage.
Key words:  shield tunnel    gushing water    dewatering    rewatering    emergency control mechanism
收稿日期:  2023-07-06      修回日期:  2023-08-30      发布日期:  2023-12-19     
中图分类号:  U45  
基金资助: 国家自然科学基金资助项目(52078376)
通讯作者:  柳献(1977一),男,湖北武汉人,教授,博士生导师,博士,主要研究方向为隧道及地下结构服役行为、相关机制与性态控制。    E-mail:  xian.liu@tongji.edu.cn
作者简介:  孙齐昊(1996—),男,安徽马鞍山人,博士研究生,主要研究方向为隧道及地下结构事故与灾害。E-mail:1732381-sqh@tongji.edu.cn
引用本文:    
孙齐昊, 舒计城, 范森, 柳献. 降水与回灌水抢险作用机制的试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(4): 33-46.
SUN Qihao, SHU Jicheng, FAN Sen, LIU Xian. Experimental study on the mechanism of dewatering and rewatering for emergency response. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 33-46.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I4/33
[1] 白云, 胡向东, 肖晓春. 国内外重大地下工程事故与修复技术[M].2版.北京: 中国建筑工业出版社, 2019.
[2] 广东省应急管理厅. 2018年广东省佛山市轨道交通2号线一期工程“2·7”透水坍塌重大事故调查报告[R].广州:广东省应急管理厅,2019.
[3] 柳献, 范森, 孙齐昊. 堵漏浆材在隧道涌水抢险中的选型分析[J]. 现代隧道技术, 2022,59(增刊1):1029-1036. LIU Xian, FAN Sen, SUN Qihao. Selection analysis of plugging materials used in tunnel water inrush accident[J]. Modern Tunnelling Technology, 2022, 59(Suppl.1):1029-1036.
[4] 柳献, 范森, 孙齐昊. 重力反压应用于隧道涌水抢险的原理与分析[J]. 现代隧道技术, 2022,59(增刊1):340-344. LIU Xian, FAN Sen, SUN Qihao. Analysis on back-filling principles and measures in water inrush accidents[J]. Modern Tunnelling Technology, 2022, 59(Suppl.1): 340-344.
[5] 张庆松, 张连震, 李鹏, 等. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57. ZHANG Qingsong, ZHANG Lianzhen, LI Peng, et al. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47-57.
[6] 陈卫忠, 袁敬强, 黄世武, 等. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019,1(3):32-38. CHEN Weizhong, YUAN Jingqiang, HUANG Shiwu, et al. Treatment technology of water and mud inrush disaster in water-rich weathered granite tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3):32-38.
[7] 王纪伟, 张连震, 张庆松, 等. 富水裂隙岩体注浆材料适用性现场试验研究[J]. 隧道与地下工程灾害防治, 2021,3(1):58-67. WANG Jiwei, ZHANG Lianzhen, ZHANG Qingsong, et al. Field test research on applicability of grout materials in water-rich fractured rock grouting engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1):58-67.
[8] 郑刚, 栗晴瀚, 程雪松, 等. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020,41(增刊1):208-216. ZHENG Gang, LI Qinghan, CHENG Xuesong, et al. Theory and design of fast decompression and recharge of confined layer applied in tunnel emergency rescue[J]. Rock and Soil Mechanics, 2020, 41(Suppl.1): 208-216.
[9] 王如路. 轨道交通地下车站深基坑施工承压水突涌预控对策与应急策略[J]. 隧道与轨道交通, 2019(3):5-10. WANG Rulu. Pre-control countermeasures and emergency plan for confined water surge in deep excavation of rail transit station[J]. Tunnel and Rail Transit, 2019(3): 5-10.
[10] 徐长节, 徐礼阁, 孙凤明, 等. 深基坑承压水的风险控制及处理实例[J]. 岩土力学, 2014,35(增刊1):353-358. XU Changjie, XU Lige, SUN Fengming, et al. Risk control and dealing example of confined water of deep foundation pit[J]. Rock and Soil Mechanic, 2014, 35(Suppl.1):353-358.
[11] 谢其勇. 武汉地铁4号线二期复兴路站涌水事故处理经验总结[J]. 科技视界, 2013(10): 80.
[12] 郑刚, 邓旭, 刘庆晨. 承压含水层减压降水对既有盾构隧道影响研究[J]. 岩土力学, 2015,36(1):178-188. ZHENG Gang, DENG Xu, LIU Qingchen. Analysis of responses of existing shield tunnel to pressure-relief in confined aquifer[J]. Rock and Soil Mechanics, 2015, 36(1):178-188.
[13] 贺翀, 金芸芸. 悬挂式降水基坑涌水量的源汇计算方法[J]. 隧道与地下工程灾害防治, 2020,2(1):91-96. HE Chong, JIN Yunyun. Calculation of water inflow of suspended dewatering foundation pit with source-sink method[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(1):91-96.
[14] 王敦显, 王孟. 超固结地层条件下深基坑围护结构与降水设计[J]. 隧道与地下工程灾害防治, 2019,1(4):97-102. WANG Dunxian, WANG Meng. Support structure and precipitation design of deep foundation pit in over-consolidated stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4):97-102.
[15] CHAI J C, SHEN S L, ZHU H H, et al. Land subsidence due to groundwater drawdown in Shanghai[J]. Géotechnique, 2004, 54(2): 143-147.
[16] 郑刚, 曾超峰, 刘畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013,35(增刊2):491-495. ZHENG Gang, ZENG Chaofeng, LIU Chang. Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl.2):491-495.
[17] ZHENG Gang, HA Da, ZENG Chaofeng, et al. Influence of the opening timing of recharge wells on settlement caused by dewatering in excavations[J]. Journal of Hydrology, 2019, 573:534-545.
[18] ZHANG Yangqing, WANG Jianhua, CHEN Jinjian, et al. Numerical study on the responses of groundwater and strata to pumping and recharge in a deep confined aquifer[J]. Journal of Hydrology, 2017, 548:342-352.
[19] 郭畅. 超重力渗透侵蚀装置设计和初步试验研究[D]. 杭州:浙江大学, 2020. GUO Chang. Design of super gravity in ternal erosion device and preliminary experimental study[D]. Hangzhou:Zhejiang University, 2020.
[20] 郑刚, 戴轩, 张晓双. 地下工程漏水漏砂灾害发展过程的试验研究及数值模拟[J]. 岩石力学与工程学报, 2014,33(12):2458-2471. ZHENG Gang, DAI Xuan, ZHANG Xiaoshuang. Experimental study and numerical simulation of leaking process of sand and water in underground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12):2458-2471.
[21] 柳献, 孙齐昊. 盾构隧道衬砌结构连续性破坏事故案例分析[J]. 隧道与地下工程灾害防治,2020,2(2):21-30. LIU Xian, SUN Qihao. Case analysis on progressive collapse of shield tunnel linings[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(2):21-30.
[1] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[2] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[3] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[4] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[5] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[6] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[7] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[8] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[9] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[10] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[11] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[12] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[13] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[14] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[15] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn