Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (2): 99-112    DOI: 10.19952/j.cnki.2096-5052.2024.02.10
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
二次衬砌施作时机对盾构隧道纵向力学性能的影响分析
王宏超1,胡军2,周永强2,3,付晓东2,3
1.中铁二院工程集团有限公司, 四川 成都 610031;2.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室, 湖北 武汉 430071;3.中国科学院大学, 北京 100049
The influence of secondary lining construction time on longitudinal mechanical properties of shield tunnel
WANG Hongchao1, HU Jun2, ZHOU Yongqiang2,3, FU Xiaodong2,3
1. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, Sichuan, China;
2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Wuhan 430071, Hubei, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
下载:  PDF (11265KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决盾构隧道因纵向不均匀变形引起的结构局部破坏和渗漏水等病害,对盾构隧道二次衬砌施作时机的影响规律及合理施作时机进行研究,建立双层衬砌盾构隧道三维纵向精细化数值模型,模拟管片螺栓力学特性和双层衬砌层间接触面交互特性,以施作二衬时管片衬砌变形程度作为二衬施作时机,通过隧道纵向等效抗弯刚度、纵向变形及结构受力情况分析二衬施作时机对双层衬砌盾构隧道纵向力学性能的影响。研究结果表明:二衬的施作能够有效提高结构抵抗纵向变形能力,减小管片衬砌纵向内力,且施作越早效果越明显。然而,过早施作二衬会导致二次衬砌承载较大,且不能充分发挥管片的承载能力,造成结构性能的浪费。结合双层衬砌结构纵向受力情况,引入合理程度作为判断标准,确定二衬合理施作时机为管片变形达到最终变形的37.5%~62.5%。在此施作时机下,管片衬砌变形处于容许范围内,隧道结构可以同时满足工程经济性和结构可靠性的要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宏超
胡军
周永强
付晓东
关键词:  盾构隧道  双层衬砌  精细化模型  二衬施作时机  纵向力学性能    
Abstract: To solve the problem of local damage and water seepage and leakage of lining structure caused by the longitudinal uneven deformation in shield tunnel, the influence law of construction time of the secondary lining and the reasonable construction time were researched in this paper. A three-dimension longitudinal refined numerical model of shield tunnel with double-layered lining was established, and the mechanical properties of the bolts and the interface between segment and secondary lining were realistically simulated. The deformation degree of segment lining when the secondary lining was constructed was used as the construction time of secondary lining, and the influence of the construction time of secondary lining on the longitudinal mechanical properties of double-layered lining shield tunnel was analyzed through the longitudinal equivalent flexural stiffness, longitudinal deformations and longitudinal internal forces of shield tunnel. The researches shown that the ability of shield tunnel structure to resist longitudinal deformation was improved and the longitudinal internal force of segment lining was reduced owing to the construction of secondary lining. The earlier the construction time, the better the effect. However, the secondary lining load-bearing became prominent and the load-bearing capacity of segment lining could not be utilized sufficiently when the secondary lining was constructed early, resulting in a waste of structural capacity. Considering the longitudinal internal force situation of the double-layered lining structure, the reasonable degree was introduced as the judgment criterion, and the reasonable construction time of secondary lining was determined to be 37.5%-62.5%. In this condition, the segment lining deformation was within the tolerance range, and the requirements of engineering economy and structural reliability of tunnel structure could be satisfied at the same time.
Key words:  shield tunnel    double-layer lining    refined numerical model    secondary lining construction time    longitudinal mechanical propertyReceived:2023-12-04    Revised:2024-02-07    Accepted:2024-02-23    Published:2024-06-20
发布日期:  2024-06-28     
中图分类号:  U451  
基金资助: 国家自然科学基金面上资助项目(52079135)
作者简介:  王宏超(1988— ),男,辽宁沈阳人,高级工程师,硕士,主要研究方向为隧道与地下工程勘察设计. E-mail:519795213@qq.com
引用本文:    
王宏超,胡军,周永强,付晓东. 二次衬砌施作时机对盾构隧道纵向力学性能的影响分析[J]. 隧道与地下工程灾害防治, 2024, 6(2): 99-112.
WANG Hongchao, HU Jun, ZHOU Yongqiang, FU Xiaodong. The influence of secondary lining construction time on longitudinal mechanical properties of shield tunnel. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 99-112.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I2/99
[1] LIN Dong, BROERE Wout, CUI Jianqiang. Metro systems and urban development: impacts and implications[J]. Tunnelling and Underground Space Technology, 2022, 125: 104509.
[2] WANG Zhan, WANG Lizhong, LI Lingling, et al. Failure mechanism of tunnel lining joints and bolts with uneven longitudinal ground settlement[J]. Tunnelling and Underground Space Technology, 2014, 40: 300-308.
[3] ZHOU Shunhua, DI Honggui, XIAO Junhua, et al. Differential settlement and induced structural damage in a cut-and-cover subway tunnel in a soft deposit[J]. Journal of Performance of Constructed Facilities, 2016, 30(5):04016028.
[4] 王士民, 于清洋, 彭博, 等. 基于塑性损伤的盾构隧道双层衬砌三维实体非连续接触模型研究[J]. 岩石力学与工程学报, 2016, 35(2): 303-311. WANG Shimin, YU Qingyang, PENG Bo, et al. Three-dimensional discontinuous contact model for shield tunnels with double-layer lining based on plastic-damage model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 303-311.
[5] 何英杰, 张述琴, 吕国梁. 穿黄隧道内外衬联合受力结构模型试验研究[J]. 长江科学院院报, 2002, 19(增刊1): 64-67. HE Yingjie, ZHANG Shuqin, LÜ Guoliang. Experiment research on united action of inside and outside liner of Yellow-River-Crossing Tunnel of Water Transfer Project from South to North[J]. Journal of Yangtze River Scientific Research Institute, 2002, 19(Suppl.1): 64-67.
[6] 张永冠. 铁路盾构隧道双层衬砌力学行为研究[D]. 成都:西南交通大学, 2010. ZHANG Yongguan. Study on the mechanics behavior of railway shield tunnel with double lining[D].Chengdu: Southwest Jiaotong University, 2010.
[7] ZHU Yueyue, LIU Cheng, YIN Xiaotian, et al. Analysis of the internal force and deformation characteristics of double-layer lining structure of water conveyance tunnel[J]. Geofluids, 2022, 2022: 9159632.
[8] YAN Qixiang, YAO Chaofan, YANG Wenbo, et al. An improved numerical model of shield tunnel with double lining and its applications[J]. Advances in Materials Science and Engineering, 2015, 2015: 430879.
[9] 姚超凡, 晏启祥, 何川, 等. 一种改进的盾构隧道双层衬砌分析模型及其应用研究[J]. 岩石力学与工程学报, 2014, 33(1): 80-89. YAO Chaofan, YAN Qixiang, HE Chuan, et al. An improved analysis model for shield tunnel with double-layer lining and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 80-89.
[10] FENG Kun, HE Chuan, FANG Yong, et al. Study on the mechanical behavior of lining structure for underwater shield tunnel of high-speed railway[J]. Advances in Structural Engineering, 2013, 16(8): 1381-1399.
[11] EL NAGGAR H, HINCHBERGER S D. An analytical solution for jointed tunnel linings in elastic soil or rock[J]. Canadian Geotechnical Journal, 2008, 45(11): 1572-1593.
[12] 陈秋杰, 杨仲轩, 徐荣桥, 等. 一种新的盾构隧道双层衬砌解析分析方法[J]. 岩石力学与工程学报, 2020, 39(增刊1): 2713-2724. CHEN Qiujie, YANG Zhongxuan, XU Rongqiao, et al. A new analytical solution for shield tunnel with double lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl.1): 2713-2724.
[13] 张厚美, 过迟, 吕国梁. 盾构压力隧洞双层衬砌的力学模型研究[J]. 水利学报, 2001, 32(4): 28-33. ZHANG Houmei, GUO Chi, LÜ Guoliang. Mechanical model for shield pressure tunnel with secondary linings[J]. Journal of Hydraulic Engineering, 2001, 32(4): 28-33.
[14] 张厚美, 连烈坤, 过迟. 盾构隧洞双层衬砌接头相互作用模型[J]. 岩石力学与工程学报, 2003, 22(1): 70-74. ZHANG Houmei, LIAN Liekun, GUO Chi. Joint interaction models for shield tunnel segment reinforced by secondary linings[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 70-74.
[15] 晏启祥, 程曦, 何川, 等. 水压条件下盾构隧道双层衬砌力学特性分析[J]. 铁道工程学报, 2010, 27(9): 55-59. YAN Qixiang, CHENG Xi, HE Chuan, et al. Analysis of mechanical properties of double-layered lining of shield tunnel under water pressure[J]. Journal of Railway Engineering Society, 2010, 27(9): 55-59.
[16] 晏启祥, 姚超凡, 何川, 等. 水下盾构隧道双层衬砌分析模型的比较研究[J]. 铁道学报, 2015, 37(12): 114-120. YAN Qixiang, YAO Chaofan, HE Chuan, et al. Comparative study of analysis models for underwater shield tunnel with double linings[J]. Journal of the China Railway Society, 2015, 37(12): 114-120.
[17] 梁敏飞, 张哲, 李策, 等. 盾构隧道双层衬砌结构三维力学分析模型及验证[J]. 岩土工程学报, 2019, 41(5): 892-899. LIANG Minfei, ZHANG Zhe, LI Ce, et al. Three-dimensional mechanical analysis model and verification of shield tunnels with double-layer linings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 892-899.
[18] 王俊, 徐国文, 蔚艳庆, 等. 一种改进的盾构隧道双层衬砌计算模型及其工程应用[J]. 岩土工程学报, 2021, 43(8): 1502-1510. WANG Jun, XU Guowen, WEI Yanqing, et al. An improved model for shield tunnels with double-layer linings and its application in engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1502-1510.
[19] SHI Yujin, XIAO Xiao, LI Mingguang. Long-term longitudinal deformation characteristics of metro lines in soft soil area[J]. Journal of Aerospace Engineering, 2018, 31(6):04018080.
[20] QIU Jutao, JIANG Jie, ZHOU Xiaojun, et al. Analytical solution for evaluating deformation response of existing metro tunnel due to excavation of adjacent foundation pit[J]. Journal of Central South University, 2021, 28(6): 1888-1900.
[21] HUANG Zhen, ZHANG Hai, FU Helin, et al. Deformation response induced by surcharge loading above shallow shield tunnels in soft soil[J]. KSCE Journal of Civil Engineering, 2020, 24(8): 2533-2545.
[22] 张迪, 陈睿杰, 廖少明. 盾构隧道双层衬砌结构纵向等效弯曲刚度研究:以上海吴淞口长江隧道工程为例[J].隧道建设(中英文), 2021, 41(增刊1): 28-35. ZHANG Di, CHEN Ruijie, LIAO Shaoming. Study of longitudinal equivalent bending stiffness of double-layered lining of shield tunnel: a case study of Wusongkou Yangtze River-Crossing Tunnel in Shanghai[J]. Tunnel Construction, 2021, 41(Suppl.1): 28-35.
[23] 何川, 郭瑞, 肖明清, 等. 铁路盾构隧道单、双层衬砌纵向力学性能的模型试验研究[J]. 中国铁道科学, 2013, 34(3): 40-46. HE Chuan, GUO Rui, XIAO Mingqing, et al. Model test on longitudinal mechanical properties of single and double layered linings for railway shield tunnel[J]. China Railway Science, 2013, 34(3): 40-46.
[24] 郭文琦, 陈健, 王士民, 等. 二衬厚度对盾构隧道双层衬砌纵向力学性能的影响[J]. 铁道标准设计, 2020, 64(2): 142-148. GUO Wenqi, CHEN Jian, WANG Shimin, et al. The influence of the thickness of secondary lining on the longitudinal mechanical properties of shield tunnel with double-layer lining[J]. Railway Standard Design, 2020, 64(2): 142-148.
[25] 王永刚, 丁文其, 刘志强, 等. 木寨岭隧道大变形分级标准与支护时机研究[J]. 地下空间与工程学报, 2020, 16(4): 1116-1122. WANG Yonggang, DING Wenqi, LIU Zhiqiang, et al. Classification standard of large deformation and construction time of second lining in Muzhailing Tunnel[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(4): 1116-1122.
[26] 刘洋, 龚振华, 梁敏飞, 等. 考虑变荷载影响的水下盾构隧道双层衬砌力学特性分析[J]. 铁道标准设计, 2022, 66(7): 101-107. LIU Yang, GONG Zhenhua, LIANG Minfei, et al. Analysis of mechanical characteristics of shield tunnel with double-layer lining considering variable loads[J]. Railway Standard Design, 2022, 66(7): 101-107.
[27] 王士民, 陈兵, 王先明, 等. 盾构隧道二次衬砌合理施作时机模型试验研究[J]. 岩土工程学报, 2020, 42(5): 882-891. WANG Shimin, CHEN Bing, WANG Xianming, et al. Model tests on reasonable construction time of secondary lining of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 882-891.
[28] HU Jun, CHAI Shaobo, WANG Hongchao, et al. Longitudinal mechanical properties of shield tunnels crossing soft and hard mutation strata[J]. International Journal of Geomechanics, 2023, 23(12): 04023225.
[29] DO N A, DIAS D, ORESTE P, et al. 2D numerical investigation of segmental tunnel lining under seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 72: 66-76.
[30] DO N A, DIAS D, ORESTE P, et al. 2D numerical investigation of segmental tunnel lining behavior[J].Tunnelling and Underground Space Technology, 2013, 37: 115-127.
[31] 封坤. 大断面水下盾构隧道管片衬砌结构的力学行为研究[D]. 成都:西南交通大学, 2012. FENG Kun. Research on mechanical behavior of segmental lining structure for underwater shield tunnel with large cross-section[D]. Chengdu: Southwest Jiaotong University, 2012.
[32] Itasca Consulting Group Inc.. FLAC3D user's manual version6.0[M]. Minnesota,US:Itasca Consulting Group Inc., 2019.
[33] 何川, 封坤, 孙齐, 等. 盾构隧道结构耐久性问题思考[J]. 隧道建设(中英文), 2017, 37(11): 1351-1365. HE Chuan, FENG Kun, SUN Qi. Consideration on issues about structural durability of shield tunnels[J]. Tunnel Construction, 2017, 37(11): 1351-1365.
[34] 张治国,程志翔,张孟喜,等. 考虑衬砌渗透性的盾构下穿既有隧道纵向结构错台变形研究[J]. 中国公路学报, 2022, 35(11): 180-194. ZHANG Zhiguo, CHENG Zhixiang, ZHANG Mengxi, et al. Dislocation deformation for existing tunnel longitudinal structure induced by shield tunneling by under-crossing type considering influence of lining permeability[J]. China Journal of Highway and Transport, 2022, 35(11): 180-194.
[35] 肖明清. 复合式衬砌隧道的总安全系数设计方法探讨[J]. 铁道工程学报, 2018, 35(1): 84-88. XIAO Mingqing. Discussion on design method of general safety factor of composite lining tunnel[J]. Journal of Railway Engineering Society, 2018, 35(1): 84-88.
[1] 闫治国,王紫锐,沈奕,刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[2] 孙齐昊, 舒计城, 范森, 柳献. 降水与回灌水抢险作用机制的试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(4): 33-46.
[3] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[4] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[5] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[6] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[7] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[8] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[9] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[10] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[11] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[12] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[13] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[14] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[15] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn