Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
甘青隧道初始地应力场分析及岩爆预测
李启弟1,梁庆国1*,周仁2,杨家伟2,蔡遵乐1
(1.兰州交通大学土木工程学院,甘肃 兰州 730070; 2. 中铁二局集团有限公司,四川 成都 610031)
Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel#br#
LI Qidi1, LIANG Qingguo1*, ZHOU Ren2, YANG Jiawei2, CAI Zunle1
(1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu,China; 2. China Railway No. 2 Engineering Group Co., Ltd., Chengdu 610031, Sichuan,China)
下载:  PDF (1559KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探明西成铁路甘青隧道工程区初始地应力场分布规律并准确预测岩爆,采用多元线性回归原理,基于隧道工程区实测地应力数据、地形地貌、地层岩性、地质构造和试验研究成果等,利用FLAC3D数值模拟分析软件进行反演分析工程区初始地应力场。分析了隧道开挖卸荷后的应力重分布和局部应力集中情况,并结合修正的“谷-陶岩爆判据”对隧道高地应力区段可能发生岩爆的具体部位及其强度进行预测。研究结果表明:甘青隧道处于地质构造复杂、应力高度集中以及大埋深的高地应力环境,燕山期闪长岩和三叠系板岩岩体坚硬、完整性良好,存在岩爆风险;甘青隧道工程区最大主应力为2.3~ 25.2 Mpa,最小主应力1.0~ 15.8 Mpa,三向主应力在埋深小于300 m时关系为SH>Sh>SV,在埋深为300~ 700 m时关系为SH>SV>Sh,且地应力特征以水平构造应力为主;甘青隧道整体呈现弱-中等岩爆状态,甘青隧道DK394+700—DK398+500具备发生高岩爆活动的条件,DK384+500—DK394+700、DK398+500—402+200具备发生中等岩爆活动的条件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李启弟
梁庆国
周仁
杨家伟
蔡遵乐
关键词:  铁路隧道  初始地应力场  地应力场反演  岩爆预测  数值模拟    
Abstract: In order to explore the distribution law of the initial ground stress field in the Ganqing Tunnel engineering area of Xicheng Railway and accurately predict the rockburst, the principle of multiple linear regression was adopted. Based on the measured stress data, landform, stratum & lithology, geologic structure and experimental research results, etc,the FLAC3D numerical simulation analysis software was used to invert and analyze the initial stress field of the project area. Analyzed the stress redistribution and local stress concentration after unloading during tunnel excavation, and predicted the specific location and strength of rock burst that may occur in the high stress section of the tunnel based on the modified "Gu-Tao rockburst criterion". The research results indicated that the Ganqing Tunnel is located in a high stress environment with complex geological structures, high stress concentration, and large burial depth. The Yanshanian diorite and Triassic slate rock masses are hard and intact, and there is a risk of rockburst; The maximum principal stress in the Ganqing Tunnel project area was 2.3~ 25.2 Mpa, and the minimum principal stress was 1.0~ 15.8 Mpa. The relationship between the triaxial principal stress was SH>Sh>SV when the burial depth was less than 300 m, and SH>SV>Sh when the burial depth was 300~700 m. The stress characteristics were mainly horizontal structural stress; The Ganqing Tunnel as a whole presented a weak to moderate rockburst state. The Ganqing Tunnel DK394+700-DK398+500 had the conditions for high rockburst activity, while DK384+500-DK394+700 and DK398+500- 402+200 had the conditions for moderate rockburst activity.
Key words:  railway tunnel    initial ground stress field    ground stress field inversion    rockburst prediction    numerical simulation
收稿日期:  2024-06-23      修回日期:  2024-09-11      发布日期:  2024-09-12     
中图分类号:  U45  
基金资助: 国家自然科学基金资助项目(51968041);中国博士后科学基金资助项目(2021M693843);兰州交通大学“百名青年优秀人才培养计划”资助项目(2017150)
通讯作者:  梁庆国(1976—),男,甘肃临洮人,教授,博士生导师,博士,主要研究方向为隧道与地下工程。   
作者简介:  李启弟(1997—),男,甘肃武山人,硕士研究生,主要研究方向为隧道与地下工程。E-mail:1813743077@qq.com
引用本文:    
李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, .
LI Qidi, LIANG Qingguo, ZHOU Ren, YANG Jiawei, CAI Zunle. Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel#br#. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-14.
链接本文:  
[1] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[2] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[3] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[4] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[5] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[6] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[7] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[8] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[9] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[10] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[11] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[12] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[13] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[14] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[15] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] SONG Changqing, FANG Xiaozheng , XIE Jian. Traffic noise data quality control method and its application in surface wave exploration[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[4] HUANG Zheng, YE Zhangqian, ZHANG Jiawei, PENG Zimao, YAN Zhanshuo. The influence of intumescent fire retardant coating on the fire resistance of assembled frame tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -16 .
[5] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[6] . [J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 124 -127 .
[7] JIA Rui, YANG Gang, ZHENG Gang. Influence of shield tunnel construction history on seismic response of tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 41 -51 .
[8] WANG Qiuzhe, HAN Rui, BAI Xiaoxiao, ZHAO Kai. Seismic stability of immersed tunnel under locked backfill[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 71 -77 .
[9] . [J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 128 -130 .
[10] HAO Junsuo, LIU Junfeng, LIU Hao, ZHAO Mingfan. Inducement and prevention technology of secondary disasters of water and mud inrush in tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 81 -92 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn