Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (3): 100-110    DOI: 10.19952/j.cnki.2096-5052.2021.03.11
  先进计算方法在隧道与岩土工程中的应用 本期目录 | 过刊浏览 | 高级检索 |
基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析
张鸿勇1,张艳杰2,刘春1*,施斌1,曹政2
1. 南京大学地球科学与工程学院, 江苏 南京 210023;2. 中国地质大学(武汉)工程学院, 湖北 武汉 430000
Analysis of grouting treatment for convergence deformation of metro tunnel based on discrete element pore density flow method
ZHANG Hongyong1, ZHANG Yanjie2, LIU Chun1*, SHI Bin1, CAO Zheng2
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China;
2. School of Engineering, China University of Geosciences(Wuhan), Wuhan 430000, Hubei, China
下载:  PDF (20392KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为模拟注浆治理横向大变形效果及机理分析,提出离散元孔隙密度流法,通过改进研发离散元软件MatDEM,实现隧道注浆流固耦合过程数值模拟。基于上海隧道工程实例数据,开展突发堆载下隧道注浆的离散元分析,数值模拟的隧道横向收敛值和现场实测结果十分接近。进一步数值分析表明:随着突发荷载的增大,隧道水平收敛值呈现出非线性增长趋势;采用孔隙密度流法分析注浆对隧道横向变形的恢复效果,结果表明随着突发堆载和注浆距离的增大,注浆对隧道水平收敛恢复比例的影响非线性减小。此方法可进一步应用于复杂条件下隧道注浆的数值分析和机理研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鸿勇
张艳杰
刘春
施斌
曹政
关键词:  离散元  数值模拟  收敛变形  隧道注浆  MatDEM    
Abstract: To simulate the effect of grouting to control large lateral deformation and its mechanism analysis, the discrete element pore density flow method was proposed. Through the improvement of the discrete element software MatDEM, the numerical simulation of the fluid-solid coupling process of tunnel grouting was realized. Based on the instance data of the Shanghai Tunnel Project, the discrete element analysis of tunnel grouting under sudden load was carried out. The numerical simulation of the tunnel lateral convergence value was very close to the test result. Numerical analysis showed that as the sudden load increased, the horizontal convergence of the tunnel showed a nonlinear growth trend; the pore density flow method was used to analyze the recovery effect of grouting on the transverse deformation of the tunnel. The results showed that with the sudden load and grouting as the distance increased, the influence of grouting on the recovery percentage of the tunnel lateral convergence decreased nonlinearly. This method can be further applied to the numerical analysis and mechanism research of tunnel grouting under complex conditions.
Key words:  discrete element    numerical simulation    convergence deformation    tunnel grouting    MatDEM
收稿日期:  2021-05-08      修回日期:  2021-06-23      发布日期:  2021-09-20     
中图分类号:  TU47  
基金资助: 国家自然科学基金项目(41761134089,41977218);中央高校基本科研业务费(14380103)
通讯作者:  刘春(1984— ),男,福建顺昌人,博士,副教授,硕士生导师,主要研究方向为计算工程地质.    E-mail:  chunliu@nju.edu.cn
作者简介:  张鸿勇(1998— ),男,湖南衡阳人,硕士研究生,主要研究方向为流固耦合数值模拟.E-mail: MF20290037@smail.nju.edu.cn.
引用本文:    
张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
ZHANG Hongyong, ZHANG Yanjie, LIU Chun, SHI Bin, CAO Zheng. Analysis of grouting treatment for convergence deformation of metro tunnel based on discrete element pore density flow method. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 100-110.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I3/100
[1] 王德明,张庆松,张霄,等. 隧道及地下工程注浆效果模糊评价方法的研究与应用[J]. 岩石力学与工程学报,2017,36(增刊1): 3431-3439. WANG Deming, ZHANG Qingsong, ZHANG Xiao, et al. Research and application on tunnel and underground engineering grouting effect of the fuzzy evaluation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Suppl.1): 3431-3439.
[2] 汪小兵. 软土地区轨道交通隧道收敛变形注浆整治工程实践[J].城市轨道交通, 2010(增刊1): 350-353. WANG Xiaobing. Grouting control of the convergence deformation of metro tunnel in soft soil[J].China Metro, 2010(Suppl.1): 350-353.
[3] 雷建华.双液微扰动注浆在隧道横向变形灾害整治中的应用及注浆过程中隧道变形的监测[J/OL].中文科技期刊数据库(文摘版)工程技术, 2017, 4(31):00093. [2021-05-08].http://www.cqvip.com/QK/71995X/201704/epub1000000881623.html. LEI Jianhua. The application of two-liquid micro-disturbance grouting in the treatment of tunnel lateral deformation disasters and the monitoring of tunnel deformation during the grouting process[J/OL].Engineering Technology, 2017, 4(31):00093.[2021-05-08].http://www.cqvip.com/QK/71995X/201704/epub1000000881623.html.
[4] 肖同刚.双液微扰动注浆加固对改善隧道收敛变形成效分析[J].隧道与轨道交通,2020(3):53-56. XIAO Tonggang. Effect analysis on tunnel convergence deformation improvement by double liquid micro-disturbance grouting[J]. Tunnel and Rail Transit, 2020(3): 53-56.
[5] 周群,沈玺,李筱旻.软土地区盾构隧道横向变形特征研究[J].浙江水利水电学院学报,2020,32(1):47-51. ZHOU Qun, SHEN Xi, LI Xiaomin. Research on transverse deformation characteristic of shield tunnel in soft soil area[J]. Journal of Zhejiang University of Water Resources and Electric Power, 2020, 32(1): 47-51.
[6] SCHWEIGER H F, KUMMERER C, OTTERBEIN R, et al. Numerical modelling of settlement compensation by means of fracture grouting[J]. Soils and Foundations, 2004, 44(1): 71-86.
[7] 王如路,张冬梅. 超载作用下软土盾构隧道横向变形机理及控制指标研究[J].岩土工程学报,2013, 35(6): 1092-1101. WANG Rulu, ZHANG Dongmei. Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1092-1101.
[8] 张冬梅,邹伟彪,闫静雅. 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报,2014, 36(12): 2203-2212. ZHANG Dongmei, ZOU Weibiao, YAN Jingya. Research on the control mechanism of lateral grouting for large lateral deformation of shield tunnel in soft soil[J]. Chinese Journal of Geotechnical Engineering,2014, 36(12): 2203-2212.
[9] 孙锋,张顶立,王臣,等. 劈裂注浆抬升既有管道效果分析及工程应用[J]. 岩土力学, 2010, 31(3): 932-938. SUN Feng, ZHANG Dingli, WANG Chen, et al. Analysis of raising pipeline by fracture grouting and its application[J]. Rock and Soil Mechanics, 2010, 31(3): 932-938.
[10] 周宗青,李利平,石少帅,等.隧道突涌水机制与渗透破坏灾变过程模拟研究[J].岩土力学,2020,41(11):3621-3631. ZHOU Zongqing, LI Liping, SHI Shaoshuai,et al.Study on tunnel water inrush mechanism and simulation of seepage failure process[J].Rock and Soil Mechanics, 2020, 41(11):3621-3631.
[11] KLOSS C, GONIVA C, HAGER A, et al. Models, algorithms and validation for opensource DEM and CFD-DEM[J]. Progress in Computational Fluid Dynamics, 2012, 12(2/3):140.
[12] NOROUZI H R, ZARGHAMI R, SOTUDEH-GHAREBAGH R, et al. CFD-DEM applications to multiphase flow[M] //Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows. [S.l.] :John Wiley & Sons, Inc, 2016.
[13] 戴轩,郑刚,程雪松,等.基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟[J]. 岩石力学与工程学报, 2019,38(2):396-408. DAI Xuan, ZHENG Gang, CHENG Xuesong, et al. Numerical simulation of ground movement induced by leakage of groundwater and sand in excavations based on the DEM-CFD method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2):396-408.
[14] 郭照立, 郑楚光.格子BOLTZMANN方法的原理及应用[M].北京:科学出版社,2009. GUO Zhaoli, ZHENG Chuguang. The principle and application of the lattice BOLTZMANN method[M]. Beijing: Science Press, 2009.
[15] ROBINSON M, RAMAIOLI M, LUDING S. Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation[J]. International Journal of Multiphase Flow, 2014, 59(2):121-134.
[16] LIU C, XU Q, SHI B, et al. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks[J]. Computers & Geosciences, 2017, 103: 12-20.
[17] 邵华,黄宏伟,张东明, 等.突发堆载引起软土地铁盾构隧道大变形整治研究[J].岩土工程报,2016,38(6):1036-1043. SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al.Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J].Chinese Journal of Geotechnical Engineering, 2016, 38(6):1036-1043.
[18] 蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. JIANG Mingjing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J].Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254.
[19] 刘春,施斌,顾凯,等. 岩土体大型三维离散元模拟系统的研发与应用[J].工程地质学报, 2014, 22(增刊1): 551-557. LIU Chun, SHI Bin, GU Kai, et al. Development and application of large-scale 3D discrete element simulation system for rock and soil[J]. Journal of Engineering Geology, 2014, 22(Suppl.1): 551-557.
[20] 上海申通地铁集团有限公司.上海城市轨道交通工程建设标准:STB/ZH-000001-2010[S].上海:上海申通地铁集团有限公司,2010.
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[3] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[4] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[5] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[6] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[7] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[8] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[9] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[10] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[11] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[12] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[13] 赵高峰, 徐志超, 郝益民, 扈晓冬, 邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[14] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[15] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn