Please wait a minute...
 
隧道与地下工程灾害防治  2020, Vol. 2 Issue (3): 58-66    
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于地层参数随机场模型的长隧道纵向地震响应分析
禹海涛1,何爽2,李攀2,3*,李帅4,陈峰军5,王新新5
1. 同济大学岩土及地下工程教育部重点实验室, 上海 200092;2. 同济大学地下建筑与工程系, 上海 200092;3. 苏州大学轨道交通学院, 江苏 苏州 215131;4. 机械工业信息研究院, 北京 100037;5. 上海建工集团股份有限公司, 上海 200080
Longitudinal seismic response analysis of long tunnels based on random field model of strata parameters
YU Haitao1, HE Shuang2, LI Pan2,3*, LI Shuai4, CHEN Fengjun5, WANG Xinxin5
1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
3. School of Rail Transportation, Soochow University, Suzhou 215131, Jiangsu, China;
4. China Machinery Industry Information Institute, Beijing 100037, China;
5. Shanghai Construction Group Co., Ltd., Shanghai 200080, China
下载:  PDF (7099KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 地震作用下隧道结构动力响应与地层介质特性密切相关,目前长隧道建设量大、面广,且长度可达数公里甚至数十公里,隧道沿线地层介质参数具有显著的空间变异性和相关性,但现有隧道纵向抗震设计中地层参数仅采用有限钻孔数据,尚未考虑钻孔之间地层的随机场特性。基于随机场理论建立描述地层参数空间变异性和相关性的随机场模型,采用协方差矩阵分解法生成地层参数随机场分布,并将其导入表征地层-结构动力相互作用的三维有限元简化模型中,从而开展考虑地层参数随机场影响的隧道纵向地震响应多工况模拟,重点研究不同地层水平相关距离、不同地层变异系数及不同地层均值变化对隧道结构动力响应的影响规律。结果表明:相关距离、变异系数及均值变化均会对结构地震响应产生显著影响,结构响应与水平相关距离及均值变化负相关,与变异系数变化正相关,且地层变异系数对结构响应的影响显著大于相关距离;与不考虑随机性的均值场相比,考虑随机场可使隧道结构弯矩响应幅值放大约80%,且在0.005的置信水平下均值场分析将导致结构设计偏于不安全。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
禹海涛
何爽
李攀
李帅
陈峰军
王新新
关键词:  隧道  随机场  纵向抗震  有限元模型  置信度分析    
Abstract: Seismic responses of tunnel structures are closely related to the surrounding strata properties. Currently, long tunnel construction develops fast and the tunnel length may reach up to several or even scores of kilometers. The strata parameters along the tunnel have significant spatial variability and correlation. However, the strata data used in the longitudinal seismic design of the tunnel was based on limited borehole data, and thus the random field characteristics of strata parameters between the boreholes have not been considered yet, or at least not well addressed. In this paper, a stochastic field model describing spatial variability and correlation of strata parameters was established based on the random field theory, and the covariance matrix decomposition method was used to generate random field distribution of strata parameters, which were employed into the simplified three-dimensional finite element model to characterize the dynamic interaction between stratum and structure. A series of simulation cases of tunnel longitudinal seismic response considering the influence of random field of stratum parameters were carried out to study the influence of horizontal correlation distance, variation coefficient and mean value of stratum on the seismic response of tunnel structure. Results indicated that: the correlation distance, variation coefficient and mean value all had a significant impact on the seismic response of the structure, and the change of horizontal correlation distance and mean value had a negative influence on the seismic response of the structure while the coefficient of variation had a positive influence. The influence of variation coefficient on the structural response was significantly greater than correlation distance; compared with the mean field without consideration of the randomness, the random field could significantly amplify the moment response amplitude of the tunnel structure by about 80%, and the mean field results would lead to unsafe design under the confidence level of 0.005.
Key words:  tunnel    random field    longitudinal seismic    finite element model    confidence analysis
收稿日期:  2020-06-18      发布日期:  2020-09-20     
中图分类号:  TU92  
基金资助: 国家重点研发计划资助项目(2018YFC0809600 & 2018YFC0809602 & 2018YFC1504305 & 2017YFC1500703);国家自然科学基金资助项目(41922059 & 51978431 & 51678438);上海市科委重点课题资助项目(18DZ1205103 & 17DZ1203804);中央高校基本科研业务费专项资金资助
作者简介:  禹海涛(1983— ),男,河南泌阳人,博士,教授,博士生导师,主要研究方向为地下结构防灾减灾. E-mail: yuhaitao@tongji.edu.cn. *通信作者简介:李攀(1981— ),男,山东邹平人,博士,副教授,主要研究方向为隧道与地下工程无损检测、风险与防灾. E-mail: yongpanli@163.com
引用本文:    
禹海涛, 何爽, 李攀, 李帅, 陈峰军, 王新新. 基于地层参数随机场模型的长隧道纵向地震响应分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 58-66.
YU Haitao, HE Shuang, LI Pan, LI Shuai, CHEN Fengjun, WANG Xinxin. Longitudinal seismic response analysis of long tunnels based on random field model of strata parameters. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 58-66.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2020/V2/I3/58
[1] VANMARCKE E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227-1246.
[2] 方超, 薛亚东. 围岩空间变异性对隧道结构可靠度的影响分析[J]. 现代隧道技术, 2014, 51(5): 41-47. FANG Chao, XUE Yadong. Analysis of the influence of spatial variability of surrounding rock on the reliability of a tunnel structure[J]. Modern Tunnelling Technology, 2014, 51(5): 41-47.
[3] HUANG H W, GONG W P, KHOSHNEVISAN S, et al. Simplified procedure for finite element analysis of the longitudinal performance of shield tunnels considering spatial soil variability in longitudinal direction[J]. Computers and Geotechnics, 2015, 64: 132-145.
[4] 程红战, 陈健, 胡之锋, 等. 考虑参数空间变异性的隧道下穿建筑物安全性评价[J]. 岩土工程学报, 2017, 39(增刊2): 75-78. CHENG Hongzhan, CHEN Jian, HU Zhifeng, et al. Evaluation of safety of buildings above tunnels accounting for spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Suppl.2): 75-78.
[5] 王长虹, 朱合华, 徐子川, 等. 考虑岩土参数空间变异性的盾构隧道地表沉降分析[J]. 岩土工程学报, 2018, 40(2): 270-277. WANG Changhong, ZHU Hehua, XU Zichuan, et al. Ground surface settlement of shield tunnels considering spatial variability of multiple geotechnical parameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 270-277.
[6] 禹海涛, 袁勇. 长大隧道地震响应分析与试验方法新进展[J]. 中国公路学报, 2018, 31(10): 19-35. YU Haitao, YUAN Yong. Review on seismic response analysis and test methods for long and large tunnels [J]. China Journal of Highway and Transport, 2018, 31(10): 19-35.
[7] 禹海涛, 蔡创, 张正伟. 任意动载作用下长隧道纵向响应解析解[J]. 同济大学学报(自然科学版), 2018, 46(1): 1-6. YU Haitao, CAI Chuang, ZHANG Zhengwei. Analytical solutions for long tunnels under arbitrary dynamic loadings [J]. Journal of Tongji University(Natural Science), 2018, 46(1): 1-6.
[8] 袁勇, 禹海涛, 燕晓, 等. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报, 2016, 29(12): 157-165. YUAN Yong, YU Haitao, YAN Xiao, et al. Multi-point shaking table test simulation and analysis of a super-long immersed tunnel[J]. China Journal of Highway and Transport, 2016, 29(12): 157-165.
[9] 禹海涛, 袁勇, 顾玉亮, 等. 非一致激励下长距离输水隧道地震响应分析[J]. 水利学报, 2013, 44(6): 718-725. YU Haitao, YUAN Yong, GU Yuliang, et al. Effect of non-uniform excitation on seismic response of long-distance water-conveyance tunnel[J]. Journal of Hydraulic Engineering, 2013, 44(6): 718-725.
[10] 袁勇, 包蓁, 禹海涛, 等. 考虑行波效应的盾构隧道多点振动台试验[J]. 中国公路学报, 2017, 30(8): 174-182. YUAN Yong, BAO Zhen, YU Haitao, et al. Multi-point shaking table test on shield tunnels in consideration of wave-passage effect [J]. China Journal of Highway and Transport, 2017, 30(8): 174-182.
[11] 岳庆霞, 任晓丹, 张鑫. 考虑地层弹性模量随机场的隧道结构地震响应分析[J]. 建筑结构学报, 2016, 37(增刊1): 356-361. YUE Qingxia, REN Xiaodan, ZHANG Xin. Seismic response of tunnel considering soil elastic modulus as random field[J]. Journal of Building Structures, 2016, 37(Suppl.1): 356-361.
[12] 李杰, 廖松涛. 考虑岩土介质随机特性的工程场地地震动随机场分析[J]. 岩土工程学报, 2002, 24(6): 685-689. LI Jie, LIAO Songtao.The analysis of coherency function of earthquake ground motion considering stochastic effect in site media[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 685-689.
[13] CHEN Z Y, LIANG S B, HE C. Seismic performance of an immersed tunnel considering random soil properties and wave passage effects[J]. Structure and Infrastructure Engineering, 2018, 14(1/3): 89-103.
[14] CHILES J P, DELFINER P. Geostatistics: modeling spatial uncertainty[M]. [S.l.] :John Wiley & Sons,1999.
[15] DAVIS M W. Production of conditional simulations via the LU triangular decomposition of the covariance matrix[J]. Mathematical Geology, 1987, 19(2): 91-98.
[16] COOLEY J W, TUKEY J W. An algorithm for the machine calculation of complex fourier series[J]. Mathematics of Computation, 1965, 19(90): 297-301.
[17] FENTON G A, VANMARCKE E H. Simulation of random fields via local average subdivision[J]. Journal of Engineering Mechanics, ASCE, 1990, 116(8): 1733-1949.
[18] JOHN C M S, ZAHRAH T F. Aseismic design of underground structures[J]. Tunnelling and Underground Space Technology, 1987, 2(2): 165-197.
[19] TON V. The JCSS probabilistic model code[J]. Structural Safety, 1997, 19(3).
[20] 禹海涛,张正伟,李攀, 等. 土岩变化地层长隧道纵向地震响应解析解[J]. 岩土工程学报, 2019, 41(7): 1244-1250. YU Haitao, ZHANG Zhengwei, LI Pan, et al. Analytical solution for longitudinal seismic responses of long tunnels crossing soil-rock stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1244-1250.
[1] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[2] 王秋哲, 韩瑞, 白笑笑, 赵凯. 锁定回填下沉管隧道地震稳定性[J]. 隧道与地下工程灾害防治, 2023, 5(3): 71-77.
[3] 蒋宇静, 王兴达, 张学朋. 远场地震作用下跨断层深埋隧道结构的动力变形破坏特征[J]. 隧道与地下工程灾害防治, 2023, 5(3): 1-11.
[4] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[5] 林颖, 王国波, 施龙飞, 王建宁. 近距离空间曲线隧道群地震响应[J]. 隧道与地下工程灾害防治, 2023, 5(3): 86-92.
[6] 袁勇, 王祺. 道路隧道对软土场地的地震动影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 12-18.
[7] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[8] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[9] 张亮亮. 纵向排烟V形坡隧道火灾烟流特性现场火灾试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 71-79.
[10] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[11] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[12] 高燕, 吴晓东, 田嘉逸. 岩土力学参数的空间变异性对地面沉降的影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 18-31.
[13] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[14] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[15] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn