Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (3): 32-42    DOI: 10.19952/j.cnki.2096-5052.2024.03.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
山区深埋公路隧道穿越断层破碎带施工稳定性
杨立1,夏增选2,娄文杰2,刘杉2,李奉庭3*,武科3
1. 昭通市大永高速公路投资开发有限公司, 云南 昭通 657000;2. 山东省交通规划设计院集团有限公司, 山东 济南 250101;3. 山东大学土建与水利学院, 山东 济南 250061
Construction stability of deeply buried highway tunnel through fault fracture zones in mountainous areas
YANG Li1, XIA Zengxuan2, LOU Wenjie2, LIU Shan2, LI Fengting3*, WU Ke3
1. Zhaotong Dayong Expressway Investment and Development Co., Ltd., Zhaotong 657000, Yunnan, China;
2. Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250101, Shandong, China;
3. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
下载:  PDF (12378KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究山区深埋公路隧道穿越断层破碎带围岩应力、应变状态及支护结构作用效果,以莲峰山隧道工程为研究背景,基于ABAQUS大型有限元数值计算程序,建立深埋隧道穿越断层破碎带施工力学计算模型,对隧道开挖衬砌后结构应力状态、山体水平和竖向沉降变化规律进行研究。结果表明: 隧道开挖时破碎带沉降远大于正常岩体;破碎带处围岩与外围山体应力差较大,且与正常山体交界处应力差较大;隧道开挖导致的沉降影响范围为50 m,双隧道中心处沉降随垂直高度增加而增加;双隧道施工中第二条隧道的开挖会引起第一条隧道应变增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨立
夏增选
娄文杰
刘杉
李奉庭
武科
关键词:  隧道工程  山区  断层破碎带  数值模拟    
Abstract: In order to investigate the stress and strain state of the surrounding rock and the effect of supporting structure of the deep buried tunnel through the fault zone in mountainous area, taking Lianfeng Mountain Tunnel Project as the research background, based on ABAQUS large-scale finite element numerical computation program, the mechanics calculation model of the construction of the deep buried tunnel through the fault zone was established, and the change rule of the structural stress state and the horizontal and vertical settlement rule of the mountain after the tunnel excavation and lining were studied. The results showed that the settlement in the fault zone during tunnel excavation was much larger than that in the normal rock body; the stress difference between the surrounding rock and the peripheral mountain body at the fault zone was larger, and the stress difference at the junction with the normal mountain body was larger; the settlement caused by tunnel excavation affected the range of 50 m, and the settlement at the center of the twin tunnels increased with the increase of vertical height; the excavation of the second tunnel in the construction of the twin tunnels caused the increase of the strain of the first tunnel.
Key words:  tunneling    mountainous area    fault fracture zone    numerical simulationReceived: 2024-06-07    Revised: 2024-08-06    Accepted: 2024-08-08    Published: 2024-09-20
发布日期:  2024-09-20     
中图分类号:  U457.2  
基金资助: 山东省重点研发计划资助项目(2018GHY115015)
作者简介:  杨立(1992— ),男,四川宜宾人,工程师,硕士,主要研究方向为公路工程技术. E-mall: 52384912@qq.com. *通信作者简介:李奉庭(1999— ),男,山东枣庄人,硕士研究生,主要研究方向为城市基础设施韧性防灾能力与智慧运维. E-mall:12319775@qq.com
引用本文:    
杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
YANG Li, XIA Zengxuan, LOU Wenjie, LIU Shan, LI Fengting, WU Ke. Construction stability of deeply buried highway tunnel through fault fracture zones in mountainous areas. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(3): 32-42.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I3/32
[1] 袁浩. 多隧道开挖诱发山体变形与应力数值模拟[J]. 现代信息科技, 2022, 6(18):142-146. YUAN Hao. Numerical simulation of mountain deformation and stress induced by multi-tunnel excavation[J]. Modern Information Technology, 2022, 6(18): 142-146.
[2] 李永靖, 王松, 刘维青, 等. 某隧道穿越富水断层破碎带围岩大变形成因分析及稳定性预测[J]. 矿业研究与开发, 2023, 43(5): 84-90. LI Yongjing, WANG Song, LIU Weiqing, et al. Deformation analysis and stability prediction of surrounding rock of the tunnel located in water-rich fault fracture zone[J]. Mining Research and Development, 2023, 43(5): 84-90.
[3] 马恩临, 钟宇健, 喻佳. 基于断裂力学的隧道近接断层破碎带结构破坏分析[J]. 公路, 2023, 68(8): 375-382. MA Enlin, ZHONG Yujian, YU Jia. Structural failure analysis of tunnel approaching fault zone based on fracture mechanics[J]. Highway, 2023, 68(8): 375-382.
[4] 刘广进, 彭亚雄, 苏莹, 等. 基于AHP-云模型的隧道断层破碎带施工风险评价[J]. 安全与环境工程, 2023, 30(3): 118-128. LIU Guangjin, PENG Yaxiong, SU Ying, et al. Excavation risk assessment of tunnel fault fracture zone based on AHP-cloud model[J]. Safety and Environmental Engineering, 2023, 30(3): 118-128.
[5] 章玉伟, 徐泽鑫, 谢远, 等. 断层破碎带隧道围岩敏感性及沉降控制分析[J]. 科学技术与工程, 2023, 23(8): 3493-3501. ZHANG Yuwei, XU Zexin, XIE Yuan, et al. Analysis of surrounding rock sensitivity and settlement control of tunnel in fault fracture zone[J]. Science Technology and Engineering, 2023, 23(8): 3493-3501.
[6] CHEN L L, WANG Y Q, WANG Z F, et al. Characteristics and treatment measures of tunnel collapse in fault fracture zone during rainfall: a case study[J]. Engineering Failure Analysis, 2023, 145: 107002.
[7] ZHANG Z Y, LIU H, CHEN H, et al. Study on supporting technology of a mining roadway in fault fracture zone with high altitude[J]. Geotechnical and Geological Engineering, 2023, 41(3): 1839-1854.
[8] ZHENG Y, WU K, JIANG Y J, et al. Optimization and design of pre-reinforcement for a subsea tunnel crossing a fault fracture zone[J]. Marine Georesources & Geotechnology, 2023, 41(1): 36-53.
[9] 李照众. 高铁隧道断层破碎带围岩参数反演研究[J]. 石家庄铁道大学学报(自然科学版), 2022, 35(4):53-59. LI Zhaozhong. Inversion study of surrounding rock parameters in fault fracture zone of high speed railway tunnel[J]. Journal of Shijiazhuang Tiedao University(Natural Science Edition), 2022, 35(4): 53-59.
[10] 凌森林, 田世雄, 路军富, 等. 隧道砂卵石围岩超前小导管注浆参数优化研究[J]. 铁道标准设计, 2019, 63(6): 114-119. LING Senlin, TIAN Shixiong, LU Junfu, et al. Study on optimization of grouting parameters of advanced ducts in sand and gravel surrounding rock of tunnels[J]. Railway Standard Design, 2019, 63(6): 114-119.
[11] 赖友烽.山区高速公路隧道穿越复杂岩层进洞方案探讨[J].交通科技与管理,2023,4(24):57-60.
[12] 白皓,潘文韬,谢金池,等.偏压隧道变形破坏机理及超前预加固研究[J].路基工程,2021(4):218-224. BAI Hao, PAN Wentao, XIE Jinchi, et al. Research on deformation and failure mechanism of unsymmetrical loading tunnel and advanced pre-reinforcement[J]. Subgrade Engineering, 2021(4): 218-224.
[13] 张宁.公路隧道施工中不良地质判断与处理技术[J].西部交通科技,2018(12):85-90. ZHANG Ning. Adverse geological judgment and treatment technology in highway tunnel construction[J]. Western China Communications Science & Technology, 2018(12): 85-90.
[14] 李奎.公路隧道工程不良地质段施工技术分析[J].科学技术创新,2022(23):128-131. LI Kui. Analysis on construction technology of unfavorable geological section in highway tunnel engineering[J]. Scientific and Technological Innovation, 2022(23): 128-131.
[15] 王杰,盛俭,赵梦丹,等.康西瓦断裂错动对近断层隧道影响的数值模拟分析[J].地震工程与工程振动,2022,42(3):235-242. WANG Jie, SHENG Jian, ZHAO Mengdan, et al. Numerical simulation analysis of the influence of Karakax fault dislocation on near-fault tunnel[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(3): 235-242.
[16] 邹嘉炜,陈美鹏,万进明,等.断层作用下高铁隧道受力变形模拟研究[J].四川建材,2024,50(3):175-176. ZOU Jiawei, CHEN Meipeng, WAN Jinming,et al. Simulation study on deformation of high-speed railway tunnel under fault action[J]. Sichuan Building Materials, 2024, 50(3): 175-176.
[17] 王占奎,米献炜,崔江余,等.帷幕注浆技术在天河山隧道穿越富水断层破碎带施工中的应用[J].施工技术(中英文),2023,52(6):84-89. WANG Zhankui, MI Xianwei, CUI Jiangyu, et al. Application of curtain grouting technology in Tianheshan Tunnel construction crossing water-rich fault fracture zone[J]. Construction Technology, 2023, 52(6): 84-89.
[18] 马艺虎, 周容名, 周春雨, 等. 高地应力断层破碎带隧道变形及受力特征研究[J]. 施工技术(中英文),2024,53(6): 49-55. MA Yihu, ZHOU Rongming, ZHOU Chunyu, et al. Stress and deformation characteristics of the tunnel in high in-situ stress fault fracture zone[J]. Construction Technology, 2024, 53(6): 49-55.
[19] 杨圣安,史建松,王洪亮.隧洞壁后注浆加固工艺及效果评价研究[J/OL].地下水.(2024-03-22)[2024-04-22].https://link.cnki.net/urlid/61.1096.TV.20240322.1144.002.
[20] 王禹淇,李忠义,王可,等.穿越近平行断层系的公路隧道开挖围岩变形特性研究[J].北方交通,2023(12):78-82. WANG Yuqi, LI Zhongyi, WANG Ke, et al. Research on deformation characteristics of surrounding rock during the excavation of highway tunnel crossing the subparallel fault system[J]. Northern Communications, 2023(12): 78-82.
[21] 王天木,郑贺民,徐飞,等.双断层错动下隧道衬砌结构力学响应研究[J].国防交通工程与技术,2023,21(6):30-34. WANG Tianmu, ZHENG Hemin, XU Fei, et al. Research on the structural response of tunnel-lining under double-fault dislocation[J]. Traffic Engineering and Technology for National Defence, 2023, 21(6): 30-34.
[22] 王淑娟.跨断层深海隧道衬砌变形规律及加固措施研究[J].水利与建筑工程学报,2022,20(3):67-75. WANG Shujuan. Deformation law and reinforcing measures of lining in deep-sea tunnels crossing faults[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(3): 67-75.
[23] EINSTEIN H H,SCHWARTZ C W. Simplified analysis for tunnel supports[J].Journal of Geotechnical and Geoenvironmental, 1979, 105: 499-518.
[1] 黄震,叶张骞,张嘉伟,彭子茂,严展硕. 膨胀型防火涂料对装配式框架隧道耐火性影响[J]. 隧道与地下工程灾害防治, 2024, 6(2): 46-58.
[2] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[3] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[4] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[5] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[6] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[7] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[8] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[9] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[10] 孙文斌, 曹震博, 董法旭. 断层破碎带岩石裂隙渗透性的表征方法[J]. 隧道与地下工程灾害防治, 2023, 5(1): 1-7.
[11] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[12] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[13] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[14] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[15] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn