Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (4): 1-11    DOI: 10.19952/j.cnki.2096-5052.2024.04.01
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为
王圣涛1,陈鹏涛2,刘爱武1,孙文昊3,张俊儒2*
1.中国中铁四局集团有限公司, 安徽 合肥 230002;2.西南交通大学交通隧道工程教育部重点实验室, 四川 成都 610031;3中铁第四勘察设计院集团有限公司, 湖北 武汉 430063
Construction mechanics behavior of extra-large span continuous variable cross-section tunnels using dual guide tunnel advance-central column reverse excavation method
WANG Shengtao1, CHEN Pengtao2, LIU Aiwu1, SUN Wenhao3, ZHANG Junru2*
1. China Tiesiju Civil Engineering Group, Hefei 230002, Anhui, China;
2. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;
3. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China
下载:  PDF (12883KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以青岛市胶州湾第二海底隧道正线与匝道并线超大跨连续变截面段为工程依托,在保证浅埋超大跨连续变断面隧道的开挖施工稳定性的前提下,提出了一种在限定条件下渐变大断面隧道双导洞超前-中柱反向扩挖的施工方法,结合有限元分析和现场监测数据,验证了施工方法的合理性和有效性。研究结果表明:在保持原设计的开挖分部的基础上,采用双导洞超前-中柱反向扩挖的施工方法,可以极大地提高施工效率,且隧道支护结构的变形和受力在允许范围之内,隧道结构安全稳定。数值模拟分析表明:中导洞反向扩挖会导致仰拱隆起迅速增大,隧道边墙位置容易发生应力集中,尤其是在大跨段,在横向扩挖过程中,下台阶的扩挖会使扩挖临时支撑门架受力快速增大,钢梁衔接位置容易发生应力集中。现场进行横向扩挖施工时,拱顶沉降和净空收敛稳定值均约为9 mm,初支与围岩接触压力最大约为70 kPa,经验算衬砌最大轴向应力为0.354 MPa,围岩变形及支护受力均满足规范要求。双导洞超前-中柱反向扩挖施工方法已经成功应用于青岛胶州湾第二海底隧道进口浅埋超大跨渐变断面段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王圣涛
陈鹏涛
刘爱武
孙文昊
张俊儒
关键词:  超大跨隧道  连续变断面  双导洞超前  中柱反向扩挖  数值模拟  现场监测    
Abstract: Using the section where the main line and ramps merge into the super-large span continuous variable cross-section of the Second Qingdao Jiaozhou Bay Subsea Tunnel, this paper proposed a dual guide tunnel advance-central column reverse excavation construction method under specific conditions to ensure the excavation construction stability of shallow-buried, large-span, continuously variable cross-section tunnels. The method's rationality and effectiveness were validated through finite element analysis and field monitoring data. The results showed that maintaining the original design's excavation partitions and using the proposed method could significantly enhance construction efficiency, with deformation and stress on the tunnel support structure within acceptable limits, ensuring structural safety and stability. Numerical simulation analysis showed that the reverse excavation of the central guide tunnel caused a rapid increase in the uplift of the invert, and stress concentration was likely to occur at the side walls of the tunnel, especially in the large-span section. During lateral excavation, the excavation of the lower bench significantly increased the load on the temporary support gantry, and stress concentration was prone to occur at the joints of the steel beams. During lateral expansion construction, the crown settlement and clearance convergence stabilized at approximately 9 mm, the initial support and surrounding rock contact pressure reached up to 70 kPa, and the maximum axial stress on the lining calculated empirically was about 0.354 MPa, with surrounding rock deformation and support stress meeting the standards. The dual guide tunnel advance-central column reverse excavation method had been successfully applied to the entrance section of the second Qingdao Jiaozhou Bay Subsea Tunnel.
Key words:  extra large-span tunnel    continuously variable cross-section    dual guide tunnel advance    central column reverse excavation    numerical simulation    field monitoring
收稿日期:  2024-06-18      修回日期:  2024-07-31      发布日期:  2025-01-08     
中图分类号:  U455  
基金资助: 中铁四局集团重大课题资助项目(2023-05)
作者简介:  王圣涛(1973— ),男,安徽寿县人,教授级高级工程师,主要研究方向为土木工程研究与管理. E-mail:761956344@qq.com. *通信作者简介:张俊儒(1978— ),男,山西神池人,教授,博士生导师,博士,主要研究方向为隧道及地下工程. E-mail:jrzh@swjtu.edu.cn
引用本文:    
王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
WANG Shengtao, CHEN Pengtao, LIU Aiwu, SUN Wenhao, ZHANG Junru. Construction mechanics behavior of extra-large span continuous variable cross-section tunnels using dual guide tunnel advance-central column reverse excavation method. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 1-11.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I4/1
[1] 洪开荣, 冯欢欢. 中国公路隧道近10年的发展趋势与思考[J]. 中国公路学报, 2020, 33(12): 62-76. HONG Kairong, FENG Huanhuan. Development trends and views of highway tunnels in China over the past decade[J]. China Journal of Highway and Transport, 2020, 33(12): 62-76.
[2] 张俊儒, 吴洁, 严丛文,等. 中国四车道及以上超大断面公路隧道修建技术的发展[J]. 中国公路学报, 2020, 33(1): 14-31. ZHANG Junru, WU Jie, YAN Congwen, et al. Construction technology of super-large section of highway tunnels with four or more lanes in China[J].China Journal of Highway and Transport, 2020, 33(1): 14-31.
[3] 徐晓冬, 刘杰, 段彦福, 等. 连霍高速杏花村1号大跨扁平超大断面隧道开挖方案研究[J]. 科学技术与工程, 2023, 23(28): 12258-12264. XU Xiaodong, LIU Jie, DUAN Yanfu, et al. Excavation scheme of the large-span flat and super-large section tunnel of Lianhuo High-speed Xinghua Village No.1[J]. Science Technology and Engineering, 2023, 23(28): 12258-12264.
[4] 宋战平, 张强, 赵克明, 等. 基于现场监测及数值分析的隧道双导洞超前施工优化研究[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(5): 654-661. SONG Zhanping, ZHANG Qiang, ZHAO Keming, et al. Optimization study of advanced double-drift tunnel construction based on on-site monitoring and numerical analysis[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2018, 50(5): 654-661.
[5] 王怀正,宋战平,张学文,等.富水弱胶结地层大断面隧道施工方案优化与工程应用研究[J].现代隧道技术, 2022, 59(2): 210-219. WANG Huaizheng, SONG Zhanping, ZHANG Xuewen, et al. Optimization and application of the construction scheme for large-section tunnels in water-rich and weakly cemented strata[J]. Modern Tunnelling Technology, 2022, 59(2): 210-219.
[6] 吴占瑞, 漆泰岳, 唐进才. 浅埋大断面隧道施工工法优化分析[J]. 工业建筑, 2012, 42(8): 102-107. WU Zhanrui, QI Taiyue, TANG Jincai. Optimization analysis of construction method for shallow-buried tunnel with large section[J]. Industrial Construction, 2012, 42(8): 102-107.
[7] 于勇. 营盘路湘江隧道水下浅埋大跨段隧道施工工法研究[J]. 隧道建设, 2013, 33(10): 874-882. YU Yong. A study on construction technologies for the shallow, large-span and underwater section of Xiangjiang River crossing tunnel at Yingpan Road[J]. Tunnel Construction, 2013, 33(10): 874-882.
[8] 龚彦峰, 张俊儒, 徐向东, 等. 全风化花岗岩富水地层超大断面隧道设计技术[J]. 铁道工程学报, 2015, 32(10): 79-85. GONG Yanfeng, ZHANG Junru, XU Xiangdong, et al. Design technology for super large cross section tunnel in stratum of completely weathered granite with abundant water[J]. Journal of Railway Engineering Society, 2015, 32(10): 79-85.
[9] 李树鹏, 张俊儒. 全风化花岗岩浅埋地层超大断面隧道施工工法研究[J]. 公路交通技术, 2019, 35(1): 83-90. LI Shupeng, ZHANG Junru. Study on construction technique of shallow buried tunnel with super section in completely weathered granite[J]. Technology of Highway and Transport, 2019, 35(1): 83-90.
[10] 洪军, 郭海满, 张俊儒, 等. 新考塘隧道出口三线渐变段结构选型与施工工法研究[J]. 隧道建设, 2016, 36(8): 953-959. HONG Jun, GUO Haiman, ZHANG Junru, et al. Study of structure selection and construction method for three-line transition section at exit of Xinkaotang Tunnel[J]. Tunnel Construction, 2016, 36(8): 953-959.
[11] 刘建友, 吕刚, 张民庆, 等. 京张高铁八达岭长城站超大跨隧道开挖工法研究[J]. 现代隧道技术, 2019, 56(增刊2): 578- 584. LIU Jianyou, LÜ Gang, ZHANG Minqing, et al. Study on extra-large span tunnel excavation methods for Badaling Great Wall Station of Beijing-Zhangjiakou High-Speed Railway[J]. Modern Tunnelling Technology, 2019, 56(Suppl.2): 578-584.
[12] 张民庆, 吕刚, 何志军, 等. 八达岭长城站超大跨度隧道设计施工技术研究[J]. 隧道建设(中英文), 2018, 38(3): 372-381. ZHANG Minqing, LÜ Gang, HE Zhijun, et al. Study of design and construction technology of ultra-large-span tunnel at Badaling Great Wall Station[J]. Tunnel Construction, 2018, 38(3): 372-381.
[13] 张俊儒, 吴洁, 王圣涛, 等.钢架岩墙组合支撑工法动态施工力学特性及其应用[J]. 中国公路学报, 2019, 32(9): 132-142. ZHANG Junru, WU Jie, WANG Shengtao, et al. Dynamic construction mechanical characteristics and application of combination support method of steel frame and rock wall[J]. China Journal of Highway and Transport, 2019, 32(9): 132-142.
[14] 刘杰, 米小强. 大断面黄土公路隧道改进CD法施工方法[J]. 公路交通科技(应用技术版), 2019, 15(5): 272-273. LIU Jie, MI Xiaoqiang. Improved CD method for large-section loess highway tunnel construction[J]. Journal of Highway and Transportation Research and Development, 2019, 15(5): 272-273.
[15] 赵博剑. 渐变大断面及分岔隧道施工方法研究[D]. 北京: 北京交通大学, 2019. ZHAO Bojian. Study on construction method of gradually changing large cross-section and bifurcation tunnel[D]. Beijing: Beijing Jiaotong University, 2019.
[16] 高红杰. 岩体应变软化模型及其在超大断面分岔式隧道围岩稳定性分析中的应用研究[D]. 北京: 北京交通大学, 2022. GAO Hongjie. Strain softening model of rock mass and its application in stability analysis of surrounding rock of super-large cross-section bifurcated tunnel[D]. Beijing: Beijing Jiaotong University, 2022.
[17] 李志强, 薛翊国, 曲立清, 等. 青岛胶州湾第二海底隧道主要不良地质与施工风险分析[J/OL]. 工程地质学报.(2024-07-26)[2024-08-05]. https://doi.org/10.13544/j.cnki.jeg.2022-0756. LI Zhiqiang, XUE Yiguo, QU Liqing, et al. Primary unfavorable geology and construction risks of the second subsea tunnel of Jiaozhou bay in Qingdao city[J/OL]. Journal of Engineering Geology.(2024-07-26)[2024-08-05]. https://doi.org/10.13544/j.cnki.jeg.2022-0756.
[18] 中华人民共和国交通运输部.公路隧道设计规范: JTG 3370.1—2018[S]. 北京: 人民交通出版社, 2018.
[19] 中华人民共和国住房和城乡建设部.钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社,2017.
[1] 李启弟,梁庆国,周仁,杨家伟,蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[2] 赵泽乾,朱旻,包小华,杨春山,陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[3] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[4] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[5] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[6] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[7] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[8] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[9] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[10] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[11] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[12] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[13] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[14] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[15] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[1] SONG Changqing, FANG Xiaozheng, XIE Ji'an. Traffic noise data quality control method and its application in surface wave exploration[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 20 -26 .
[2] LIU Liying, OU Zhenfeng, YANG Chunshan, DUAN Shanglei. Numerical simulation and field measurement analysis of coastal structures under immersed tunnel trench excavation[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 12 -19 .
[3] SUN Chao, ZHANG Guangwei, DA Wuqiang, YU Zufeng. Anti-floating control technology for large-diameter shield tunnels of adjacent mountain[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 27 -37 .
[4] LIU Jianbin, YANG Zhiyong, RAO Li, WANG Shuying, FANG Kejun, WANG Zhuo, YANG Zebin. Optimization of construction logistics organization for multi-section service tunnels in ultra-deep shafts[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 38 -49 .
[5] GAO Xiancheng. Research on coal damage identification model based on ConDenseNet architecture and its optimization[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 90 -98 .
[6] LI Qidi, LIANG Qingguo, ZHOU Ren, YANG Jiawei, CAI Zunle. Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 50 -60 .
[7] ZHAO Zeqian, ZHU Min, BAO Xiaohua, YANG Chunshan, CHEN Xiangsheng. Assessing the blast resistance performance of ultra-large diameter shield tunnels passing under hazardous chemical containers at docks[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 61 -71 .
[8] ZHONG Jianmin, ZHANG Liangliang, HE Yingdao, LUO Chiheng, XIONG Yifan, WANG Chao. Key design techniques of the north extension project of Jinan Jiluo Road Yellow River Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 72 -80 .
[9] WEI Songyuan, LI Hanshuo, PENG Zhenhua, WANG Zhechao, LI Wei. Experimental analysis of vertical water curtain and effectiveness of water curtain system in an underground water sealed cavern[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 81 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn