Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于SPH-FEM耦合模拟的隧道深埋排水沟爆破技术优化研究
张海兰1、吴云鹏1、邹仁1、马晓龙2、李坤泰3、高启栋3*、牛磊4、周海孝3
(1.中铁五局集团有限公司 湖南 长沙 410007;
2.青海省交通建设管理有限公司 青海 西宁 810008;
3.长安大学公路学院 陕西 西安 710064;
4.兰州理工大学 甘肃 兰州 730050)
Optimization study of blasting technology for deeply buried drainage trench in tunnel based on SPH-FEM coupled simulation
ZHANG Hailan1,WU Yunpeng1、ZOU Ren1、MA Xiaolong2、LI Kuntai3、GAO Qidong3*、NIU Lei4、ZHOU Haixiao3
(1.China Railway No.5 Engineering Group Co., Ltd.,Changsha 410007,Hunan,China;
2.Qinghai Provincial Transportation Construction Management Co., Ltd.,Qinghai,810008,Xining, China;
3.School of Highway,Chang'an University, Xi'an 710064 ,Shaanxi , China;
4.Lanzhou University of Technology,Lanzhou 730050, Gansu, China)
下载:  PDF (6061KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高通排水效率并保障隧道运行安全,依托青海赛尔龙2号隧道施工,建立了SPH-FEM耦合计算模型,对比了不同布孔方式(垂直布孔与楔形布孔)下的岩石损伤演化、爆破槽腔尺寸及岩石抛掷效果。研究结果表明:垂直布孔与楔形布孔条件下,岩体整体损伤范围基本一致,但楔形布孔时沟槽底板易产生超欠挖,不利于爆破成型控制。不同布孔方式下爆破轮廓形状相近,相比于垂直布孔,采用楔形布孔更有利于提升槽腔体积与槽腔口面积。从轮廓成型效果及粒子抛掷效率的角度,对楔形钻孔炮孔布置方案进行了优化,可在保证轮廓成型效果及粒子抛掷数量的同时,降低粒子的抛掷速度,为深埋排水沟高效成型提供参考
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  隧道工程  排水沟爆破  爆破槽腔  爆破损伤  抛掷效果  SPH-FEM耦合算法    
Abstract: To improve drainage efficiency and ensure tunnel operational safety, an SPH–FEM coupled computational model was established based on the construction of the Qinghai Saierlong No. 2 Tunnel. A comparison was made of rock damage evolution, blast-induced cavity dimensions, and rock ejection effects under different borehole arrangements (vertical drilling and wedge-shaped drilling). The research results showed that the overall extent of rock damage was generally consistent under both drilling patterns. However, wedge-shaped drilling was more prone to overbreak or underbreak at the trench bottom, which was unfavorable for blast-induced contour control. Although the blast contours were similar under both configurations, wedge-shaped drilling resulted in a larger cavity volume and a wider cavity opening compared to vertical drilling. The wedge-shaped drilling layout was optimized considering contour quality and particle ejection efficiency. This optimization reduced the particle ejection velocity while maintaining satisfactory contour formation and particle ejection quantity, thereby providing a reference for the efficient construction of deep-buried drainage ditches.
Key words:  tunneling    drainage trench blasting    blasting slot cavity    blast damage    throwing effect    SPH-FEM coupling algorithm
收稿日期:  2025-04-01      修回日期:  2025-08-18      发布日期:  2025-09-03     
中图分类号:  U43  
基金资助: 国家自然科学基金资助项目(52379096);陕西省创新能力支撑计划资助项目(2023–CX-TD–35);长安大学青年学者学科交叉团队建设资助项目(300104240925);陕西省交通运输厅交通科技资助项目(23-79K)
通讯作者:  高启栋( 1991— ),男,陕西延安人,教授、博士生导师,博士,主要研究方向为隧道与工程爆破与岩石动力学。    E-mail:  qdgao@chd.edu.cn
作者简介:  张海兰(1972—),男,湖南郴州人,工程师,主要研究方向为隧道施工。E-mail: 1254440731@qq.com
引用本文:    
张海兰、吴云鹏、邹仁、马晓龙、李坤泰、高启栋、牛磊、周海孝. 基于SPH-FEM耦合模拟的隧道深埋排水沟爆破技术优化研究[J]. 隧道与地下工程灾害防治, .
ZHANG Hailan, WU Yunpeng、ZOU Ren、MA Xiaolong、LI Kuntai、GAO Qidong、NIU Lei、ZHOU Haixiao. Optimization study of blasting technology for deeply buried drainage trench in tunnel based on SPH-FEM coupled simulation. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-18.
链接本文:  
[1] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[2] 纪禄凌,游玮,李晓逸,曾原驰,刘毓氚,张铠. 增设压力阀对隧道防排水影响[J]. 隧道与地下工程灾害防治, 2024, 6(3): 92-102.
[3] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[4] 黄震,叶张骞,张嘉伟,彭子茂,严展硕. 膨胀型防火涂料对装配式框架隧道耐火性影响[J]. 隧道与地下工程灾害防治, 2024, 6(2): 46-58.
[5] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[6] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[7] 张姣龙, 高一民, 张建, 周浩, 潘野, 柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[8] 郭新新, 朱安龙, 王万平, 汪波, 王智佼, 王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
[9] 王纪伟, 张连震, 张庆松, 杨旆, 陈新, 王建辉, 韩子川, 王洪超, 孙子正, 屠文锋. 富水裂隙岩体注浆材料适用性现场试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 58-67.
[10] 刘立鹏,王彦兵,宋倩. 水工有压隧洞衬砌启裂水头及围岩联合承载影响分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 52-58.
[11] 李鹏飞, 刘宏翔, 赵勇, 刘建友, 王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[12] 叶飞, 王坚, 田崇明, 何彪, 赵猛, 韩兴博, 李永健. 隧道排水管结晶堵塞病害研究现状与防治技术[J]. 隧道与地下工程灾害防治, 2020, 2(3): 13-22.
[13] 李利平,贺鹏,石少帅,刘洪亮,胡杰,秦承帅. 隧道施工过程巨石垮塌研究现状、问题与对策研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 22-31.
[14] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[15] 王焕. 大直径泥水盾构穿越无加固条件沉降敏感带扰动控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 107-113.
[1] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[2] WANG Lichuan , HE Weiguo, ZHANG Junru , WU Hongbin , JIANG Xinqiang , ZHANG Huijian , WANG Wen , HUANG Linxiang. Application of the steel pipe pile arch cover method in large-span underground metro stations in weak and fragmented rock strata[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -14 .
[3] Gou Xiaojun, Zhao Jinquan, Ji Wei, Hua Xiaoming, fan zhanfeng. Numerical simulation of radar characteristics of adverse geological structures in tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -19 .
[4] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[5] LI Lianran, REN Zhouhong, WANG Bin, ZHANG Quan, HUANG Hao, LIU Jijin, XU Haoyu, GUO Qian. Inverse wavefield transform method for opposing coils transient electromagnetic data and its application in ahead prospecting in the  lead-zinc mine at Huize[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -20 .
[6] WEI Songyuan, MA Jingyi, PENG Zhenhua, LIU Jianli, LI Wei. Reliability analysis of surrounding rocks stability of underground water-sealed caverns[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -3 .
[7] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 1 -10 .
[8] XIAO Peiwei, YANG Xingguo, QIAN Hongjian, WANG Haofan, LI Biao, XU Nuwen. The best supporting time of hydraulic tunnels based on multiple monitoring information[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 11 -21 .
[9] DING Jianqi, WANG Chencheng, ZHU Xiangshan, ZHANG Xiang, FU Gang, XU Jingmin. Influence mechanism of large diameter tunnel construction on adjacent buildings[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 22 -34 .
[10] WU Jiangtao, LI Yingjie. The lightweight object detection algorithm for obstacles in tunnel construction environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 48 -56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn