Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (3): 93-104    DOI: 10.19952/j.cnki.2096-5052.2025.03.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于SPH-FEM耦合模拟的隧道深埋排水沟爆破技术优化研究
张海兰1,吴云鹏1,邹仁1,马晓龙2,李坤泰3,高启栋3*,牛磊4,周海孝3
1.中铁五局集团有限公司, 湖南 长沙 410007;2.青海省交通建设管理有限公司, 青海 西宁 810008;3.长安大学公路学院, 陕西 西安 710064;4.兰州理工大学, 甘肃 兰州 730050
Optimization study of blasting technology for deeply buried drainage trench in tunnel based on SPH-FEM coupled simulation
ZHANG Hailan1, WU Yunpeng1, ZOU Ren1, MA Xiaolong2, LI Kuntai3,GAO Qidong3*, NIU Lei4, ZHOU Haixiao3
1. China Railway No.5 Engineering Group Co., Ltd., Changsha 410007, Hunan, China;
2. Qinghai Provincial Transportation Construction Management Co., Ltd., Xining 810008, Qinghai, China;
3. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China;
4. Lanzhou University of Technology, Lanzhou 730050, Gansu, China
下载:  PDF (17479KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高通排水效率并保障隧道运行安全,依托青海赛尔龙2号隧道施工,建立了SPH-FEM(smoothed particle hydrodynamics-finite element method)耦合计算模型,对比了不同布孔方式(垂直布孔与楔形布孔)下的岩石损伤演化、爆破槽腔尺寸及岩石抛掷效果。研究结果表明:垂直布孔与楔形布孔条件下,岩体整体损伤范围基本一致,但楔形布孔时沟槽底板易产生超欠挖,不利于爆破成型控制。不同布孔方式下爆破轮廓形状相近,相比于垂直布孔,采用楔形布孔更有利于提升槽腔体积与槽腔口面积。从轮廓成型效果及粒子抛掷效率的角度,对楔形钻孔炮孔布置方案进行了优化,可在保证轮廓成型效果及粒子抛掷数量的同时,降低粒子的抛掷速度,为深埋排水沟高效成型提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张海兰
吴云鹏
邹仁
马晓龙
李坤泰
高启栋
牛磊
周海孝
关键词:  隧道工程  排水沟爆破  爆破槽腔  爆破损伤  抛掷效果  SPH-FEM耦合算法    
Abstract: To improve drainage efficiency and ensure tunnel operational safety, an SPH-FEM(smoothed particle hydrodynamics-finite element method)coupled computational model was established based on the construction of the Qinghai Saierlong No. 2 Tunnel. A comparison was made of rock damage evolution, blast-induced cavity dimensions, and rock ejection effects under different borehole arrangements(vertical drilling and wedge-shaped drilling). The research results showed that the overall extent of rock damage was generally consistent under both drilling patterns. However, wedge-shaped drilling was more prone to overbreak or underbreak at the trench bottom, which was unfavorable for blast-induced contour control. Although the blast contours were similar under both configurations, wedge-shaped drilling resulted in a larger cavity volume and a wider cavity opening compared to vertical drilling. The wedge-shaped drilling layout was optimized considering contour quality and particle ejection efficiency. This optimization reduced the particle ejection velocity while maintaining satisfactory contour formation and particle ejection quantity, thereby providing a reference for the efficient construction of deep-buried drainage ditches.
Key words:  tunneling    drainage trench blasting    blasting slot cavity    blast damage    throwing effect    SPH-FEM coupling algorithmReceived:2025-04-01    Revised:2025-08-18    Accepted:2025-08-27    Published:2025-09-20
发布日期:  2025-09-19     
中图分类号:  U43  
基金资助: 国家自然科学基金资助项目(52379096);陕西省创新能力支撑计划资助项目(2023-CX-TD-35);陕西省交通运输厅交通科技资助项目(23-79K);长安大学青年学者学科交叉团队建设资助项目(300104240925)
作者简介:  张海兰(1972— ),男,湖南郴州人,工程师,主要研究方向为隧道施工. E-mail:1254440731@qq.com. *通信作者简介:高启栋(1991— ),男,陕西延安人,教授,博士生导师,博士,主要研究方向为隧道与工程爆破与岩石动力学. E-mail:qdgao@chd.edu.cn
引用本文:    
张海兰,吴云鹏,邹仁,马晓龙,李坤泰,高启栋,牛磊,周海孝. 基于SPH-FEM耦合模拟的隧道深埋排水沟爆破技术优化研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 93-104.
ZHANG Hailan, WU Yunpeng, ZOU Ren, MA Xiaolong, LI Kuntai,GAO Qidong, NIU Lei, ZHOU Haixiao. Optimization study of blasting technology for deeply buried drainage trench in tunnel based on SPH-FEM coupled simulation. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(3): 93-104.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I3/93
[1] 高文学, 刘运通, 万元林, 等. 沟槽石方基础施工技术研究[J]. 岩石力学与工程学报, 2005, 24(增刊1): 4872-4876. GAO Wenxue, LIU Yuntong, WAN Yuanlin, et al. Construction techniques research on rock ditching foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Suppl.1): 4872-4876.
[2] 张宪堂, 高文乐, 张金泉, 等. 天然气管道沟槽石方爆破开挖技术研究[J]. 岩土力学, 2006, 27(增刊2): 1045-1049. ZHANG Xiantang, GAO Wenle, ZHANG Jinquan, et al. Research on blasting excavation techniques for rock ditching of natural gas ducts[J]. Rock and Soil Mechanics, 2006, 27(Suppl.2): 1045-1049.
[3] 王振浩. 基于光面爆破原理的隧道中心沟槽爆破方法[J]. 工程爆破, 2022, 28(3): 47-54. WANG Zhenhao. Tunnel center trench blasting method based on smooth blasting principles[J]. Engineering Blasting, 2022, 28(3): 47-54.
[4] 雷振, 孙鹏昌, 卢文波, 等. 沟槽开挖成型爆破参数优化[J]. 工程爆破, 2021, 27(2): 73-78. LEI Zhen, SUN Pengchang, LU Wenbo, et al. Optimization of blasting parameters for trench excavation shaping[J]. Engineering Blasting, 2021, 27(2): 73-78.
[5] 申秦勇. 高铁隧道中心深埋水沟沟槽爆破技术[C] //张可文. 2021年全国工程建设行业施工技术交流会论文集(下册). 北京:《施工技术》杂志社, 亚太建设科技信息研究院有限公司, 2021: 1795-1796. SHEN Qinyong. Application of deep buried gully and groove blasting technique in center of high railway tunnel[C] //ZHANG Kewen.Proceedings of the 2021 National Construction Technology Exchange Conference for the Engineering Construction Industry(Lower Volume). Beijing: Construction Technology Magazine, Asia-Pacific Construction Science and Technology Information Research Institute Limited, 2021: 1795-1796.
[6] 刘刚. 隧道硬质水平岩层中心沟槽预裂爆破开挖技术[C] //中国工程爆破协会, 中国力学学会. 中国爆破新技术Ⅲ. 北京: 冶金工业出版社, 2012: 255-261. LIU Gang. Presplitting blasting excavation technology of hard rock tunnel center groove[C] //China Engineering Blasting Association, China Mechanics Society. China Blasting New Technology Ⅲ. Beijing:Metallurgical Industry Press, 2012: 255-261.
[7] 梁志荣, 李建科, 谭士帅, 等. 胶结戈壁砂石中的管沟开挖爆破[J]. 爆破, 2006(3): 41-43. LIANG Zhirong, LI Jianke, TAN Shishuai, et al. The pipe excavation blasting in cement gobi sand[J]. Blasting, 2006(3): 41-43.
[8] 司士营. 锯齿形爆破网路在沟槽开挖中的应用[J]. 安徽建筑, 2013, 6: 106. SI Shiying. Sawtooth blasting network in the application of channel excavation[J]. Anhui Construction, 2013, 6: 106.
[9] 王维.逐孔爆破在沟槽开挖中的应用[J]. 现代矿业, 2009, 12(12): 73-75. WANG Wei. Application of hole-by-hole blasting in trench excavation[J]. Modern Mining, 2009, 12(12): 73-75.
[10] 杨军伟, 池恩安, 赵明生. 复杂环境下大孔径沟槽爆破技术的应用[J]. 现代矿业, 2013, 10(534): 171-172. YANG Junwei, CHI En'an, ZHAO Mingsheng. Application of large aperture trench blasting technology in complex environment[J]. Modern Mining, 2013, 10(534): 171-172.
[11] 师文强, 王思杰, 杜文秀, 等. 基于SPH-FEM耦合算法的台阶精准爆破延期时间研究及应用[J]. 金属矿山, 2024(5): 210-219. SHI Wenqiang, WANG Sijie, DU Wenxiu, et al. Study on bench precision blasting delay time based on SPH-FEM coupling algorithm and its field application[J]. Metal Mining, 2024(5): 210-219.
[12] 陶子豪, 李祥龙, 胡启文, 等. 掏槽爆破成腔空孔效应数值模拟研究与分析[J]. 兵工学报, 2024: 1-13. TAO Zihao, LI Xianglong, HU Qiwen, et al. Study and analysis on numerical simulation of cavity effect of cut blasting[J]. Journal of Military Engineering, 2024: 1-13.
[13] 胡英国, 卢文波, 陈明, 等. SPH-FEM耦合爆破损伤分析方法的实现与验证[J]. 岩石力学与工程学报, 2015, 34(增刊1): 2740-2748. HU Yingguo, LU Wenbo, CHEN Ming, et al. Implementation and verification of SPH-FEM coupling blasting damage analytical method[J]. Journal of Rock Mechanics and Engineering, 2015, 34(Suppl.1): 2740-2748.
[14] 冷振东, 卢文波, 胡浩然, 等. 爆生自由面对边坡微差爆破诱发振动峰值的影响[J]. 岩石力学与工程学报, 2016, 35(9): 1815-1822. LENG Zhendong, LU Wenbo, HU Haoran, et al. Studies on influence of blast-created free face on ground vibration in slope blasts with millisecond-delays[J]. Journal of Rock Mechanics and Engineering, 2016, 35(9): 1815-1822.
[15] 徐成光. 复杂环境和复杂地质条件下的沟槽控制爆破[J]. 工程爆破, 1996, 2(1): 47-51. XU Chengguang. Controlled blasting with ditch in complicated environment and geology[J]. Engineering Blasting, 1996, 2(1): 47-51.
[16] 高文学, 金乾坤, 杨军, 等. 沟槽深孔微差爆破的工程实践和数值模拟[J]. 爆炸与冲击, 1999(2): 69-73. GAO Wenxue, JIN Qiankun, YANG Jun, et al. Engineering practice and numerical simulation on the millisecond blasting for ditching deep bore-holes[J]. Explosion and Shock, 1999(2): 69-73.
[17] 梅锦煜, 郑道明, 郑桂斌, 等. 水利水电工程施工技术全书 第二卷 土石方工程 第一册 爆破技术[M]. 北京: 中国水利水电出版社, 2017: 102-107.
[18] 马瑞志. 基于SPH-FEM算法的流固耦合仿真[D]. 郑州:华北水利水电大学, 2019. MA Ruizhi. Fluid-solid coupling simulation based on SPH-FEM[D]. Zhengzhou:North China University of Water Resources and Hydropower, 2019.
[19] ZHANG H, LI T C, DU Y T, et al. Theoretical and numerical investigation of deep-hole cut blasting based on cavity cutting and fragment throwing[J]. Tunnelling and Underground Space Technology, 2021, 111: 103854.
[20] 程兵, 汪海波, 汪泉, 等. SPH-FEM耦合法数值模拟在工程爆破教学中的应用研究[J]. 实验技术与管理, 2023, 40(10): 100-105. CHENG Bing, WANG Haibo, WANG Quan, et al. Research on the application of SPH-FEM coupling algorithm numerical simulation in engineering blasting teaching[J]. Experimental Technology and Management, 2023, 40(10): 100-105.
[21] 凌天龙, 吴帅峰, 刘殿书, 等. 砂岩Holmquist-Johnson-Cook模型参数确定[J]. 煤炭学报, 2018, 43(8): 2211-2216. LING Tianlong, WU Shuaifeng, LIU Dianshu, et al. Determination of Holmquist-Johnson-Cook model parameters for sandstone[J]. Journal of Coal, 2018, 43(8): 2211-2216.
[22] 郑淞午. 循环爆破作用下围岩的累积损伤规律研究[J]. 山西建筑, 2025, 51(4): 96-99. ZHENG Songwu. Study on the law of cumulative damage of surrounding rock induced by successive blasting[J]. Shanxi Construction, 2025, 51(4): 96-99.
[23] 刘运通, 高文学. 爆炸荷载下岩石损伤的数值模拟研究[J]. 岩石力学与工程学报, 2001(6): 789-792. LIU Yuntong, GAO Wenxue. Numerical simulations on rock damage under explosion loading[J]. Journal of Rock Mechanics and Engineering, 2001(6): 789-792.
[24] LI C X, YANG R S, WANG Y B, et al. Theory and numerical simulation of deep hole cut blasting based on dispersed charge and staged detonation[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 169: 105453.
[25] 胡浩然, 周海孝, 张玉柱, 等. 大型船闸开挖预裂爆破累积损伤特性及隔振效果分析[J]. 水利水运工程学报, 2023(1): 104-111. HU Haoran, ZHOU Haixiao, ZHANG Yuzhu, et al. Analysis of damage accumulating characteristics and vibration isolating effect of presplitting blasting in excavation of large-scale navigation lock[J]. Journal of Water Resources and Transportation Engineering, 2023(1): 104-111.
[26] 黄新南. 大孔径爆破技术在沟槽开挖中的应用[J]. 工程爆破, 2011, 17(3): 44-46. HUANG Xinnan. Application of large aperture blasting technique in excavating groove[J]. Engineering Blasting, 2011, 17(3): 44-46.
[27] 陈一曦, 钟明寿, 刘影, 等. 平行掏槽孔内延时爆破技术的SPH-FEM数值模拟[J]. 工程爆破, 2023, 29(3): 55-62. CHEN Yixi, ZHONG Mingshou, LIU Ying, et al. Numerical simulation on delayed blasting technology in parallel cut hole based on SPH-FEM[J]. Engineering Blasting, 2023, 29(3): 55-62.
[1] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[2] 纪禄凌,游玮,李晓逸,曾原驰,刘毓氚,张铠. 增设压力阀对隧道防排水影响[J]. 隧道与地下工程灾害防治, 2024, 6(3): 92-102.
[3] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[4] 黄震,叶张骞,张嘉伟,彭子茂,严展硕. 膨胀型防火涂料对装配式框架隧道耐火性影响[J]. 隧道与地下工程灾害防治, 2024, 6(2): 46-58.
[5] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[6] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[7] 张姣龙, 高一民, 张建, 周浩, 潘野, 柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[8] 郭新新, 朱安龙, 王万平, 汪波, 王智佼, 王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
[9] 王纪伟, 张连震, 张庆松, 杨旆, 陈新, 王建辉, 韩子川, 王洪超, 孙子正, 屠文锋. 富水裂隙岩体注浆材料适用性现场试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 58-67.
[10] 刘立鹏,王彦兵,宋倩. 水工有压隧洞衬砌启裂水头及围岩联合承载影响分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 52-58.
[11] 李鹏飞, 刘宏翔, 赵勇, 刘建友, 王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[12] 叶飞, 王坚, 田崇明, 何彪, 赵猛, 韩兴博, 李永健. 隧道排水管结晶堵塞病害研究现状与防治技术[J]. 隧道与地下工程灾害防治, 2020, 2(3): 13-22.
[13] 李利平,贺鹏,石少帅,刘洪亮,胡杰,秦承帅. 隧道施工过程巨石垮塌研究现状、问题与对策研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 22-31.
[14] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[15] 王焕. 大直径泥水盾构穿越无加固条件沉降敏感带扰动控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 107-113.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn