Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (1): 68-74    DOI: 10.19952/j.cnki.2096-5052.2021.01.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
隔离桩对不同埋深隧道邻近高铁桥桩的保护效果分析
邢慧堂1,2,王健1,2,黄永亮1,2,3,刘昆龙1,2,李成虎4
1.济南轨道交通集团有限公司, 山东 济南 250014;2.山东省智慧轨道交通信息化与装备重点实验室, 山东 济南 250014;3.山东轨道交通研究院有限公司, 山东 济南 250014;4.中铁十二局集团有限公司, 山东 济南 250101
Analysis of protective effect of isolation piles in shield tunnel construction at different burial depths adjacent to high-speed rail pile foundations
XING Huitang1,2, WANG Jian1,2, HUANG Yongliang1,2,3, LIU Kunlong1,2, LI Chenghu4
1. Jinan Rail Transit Group Co., Ltd., Jinan 250014, Shangdong, China;
2. Shandong Key Laboratory of Intelligent Rail Transit Informatization and Equipment, Jinan 250014, Shangdong, China;
3. Shandong Rail Transit Research Institute Co., Ltd., Jinan 250014, Shangdong, China;
4. China Railway 12th Bureau Group Co., Ltd., Jinan 250101, Shangdong, China
下载:  PDF (8199KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 济南轨道交通R1线、R2线4条高低叠落盾构隧道在同一工点下穿京沪高铁桥梁,为减小盾构施工对高铁桩基造成的影响,区间结构与桥桩间打设钻孔灌注桩与旋喷桩咬合形成隔离桩。采用数值分析方法研究隔离桩对不同埋深盾构隧道施工影响的保护效果。计算结果表明:在新建盾构隧道与邻近高铁桥桩之间施作隔离桩,可以有效减小隧道施工的影响范围,减小隧道施工对邻近桥桩的影响;在邻近桥桩的桩长范围内,隧道埋深越大,隧道施工对其影响越大,隔离桩对其保护效果越显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢慧堂
王健
黄永亮
刘昆龙
李成虎
关键词:  隔离桩  盾构隧道  埋深  邻近桩基  数值模拟    
Abstract: Four shield tunnels with different burial depths of Jinan Railway R1 and R2 are under the bridge of Beijing-Shanghai High-speed Railway at the same construction section, and in order to reduce the influence of shield construction on the pile foundation of High-speed Railway, the isolation piles were formed by the bored piles and cyclone piles between the interval structure and bridge piles. Based on this, the isolation and protective effect of the isolation piles on the different burial depths of the shield tunnel construction was studied by numerical analysis. The calculation results showed that the application of isolation piles between the new shield tunnel and adjacent high-speed rail bridge pile foundation could effectively reduce the range of influence of tunnel construction and reduce the impact of tunnel construction on adjacent pile foundation; the greater the tunnel burial depth within the range of pile lengths of adjacent piles, the greater the impact of tunnel construction on them, and the more significant the protection effect of isolation piles on them.
Key words:  isolation pile    shield tunnel    burial depth    adjacent pile foundation    numerical simulation
收稿日期:  2021-01-02      修回日期:  2021-02-20      发布日期:  2021-03-20     
中图分类号:  U455.43  
基金资助: 山东省自然科学基金(ZR2020QE256,ZR2020ME243);山东省重点研发计划(重大科技创新工程)(2019JZZY010428)
作者简介:  邢慧堂(1982— ),男,山东济南人,硕士,高级工程师,主要研究方向为地下工程,盾构工程技术研究及管理. E-mail: happyxht@163.com
引用本文:    
邢慧堂, 王健, 黄永亮, 刘昆龙, 李成虎. 隔离桩对不同埋深隧道邻近高铁桥桩的保护效果分析[J]. 隧道与地下工程灾害防治, 2021, 3(1): 68-74.
XING Huitang, WANG Jian, HUANG Yongliang, LIU Kunlong, LI Chenghu. Analysis of protective effect of isolation piles in shield tunnel construction at different burial depths adjacent to high-speed rail pile foundations. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 68-74.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I1/68
[1] LEE C J, JACOBSZ S W. The influence of tunnelling onadjacent piled foundations[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 430.
[2] 蔡小培, 蔡向辉, 谭诗宇, 等. 盾构下穿施工对高速铁路轨道结构的影响研究[J]. 铁道工程学报, 2016, 33(7):11-17. CAI Xiaopei, CAI Xianghui, TAN Shiyu, et al. Research on the influence of under-passing shield tunnel construction on the track structures of high-speed railway[J].Journal of Railway Engineering Society, 2016, 33(7):11-17.
[3] 袁海平,王斌,朱大勇,等. 盾构近距侧穿高架桥桩的施工力学行为研究[J]. 岩石力学与工程学报,2014,33(7):1457-1464. YUAN Haiping, WANG Bin, ZHU Dayong, et al. Mechanical behaviours of a shield tunnel adjacent to existing viaduct pile foundations[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1457-1464.
[4] 胡德华, 段景川. 盾构掘进对邻近桩基的变形特征研究[J]. 隧道建设, 2015, 35(5):413-418. HU Dehua, DUAN Jingchuan. Study on characteristics of deformation of adjacent pile foundations caused by shield boring[J]. Tunnel Construction, 2015, 35(5):413-418.
[5] 彭江.盾构隧道下穿对高铁桥梁的影响研究[J]. 工程建设与设计, 2020(15):165-167. PENG Jiang. Research on influence of shield tunneling underpass on high-speed railway bridges[J]. Construction & Design for Engineering, 2020(15):165-167.
[6] 范东方. 盾构隧道近距离侧穿高铁桥桩时隔离保护措施的效果分析[J]. 铁道勘测与设计, 2016(4): 40-42. FAN Dongfang. Effect analysis of isolation protection measures when shield tunneling through high-speed railway bridge piles at short distance[J]. Railway Survey and Design, 2016(4): 40-42.
[7] 杜虎. 不良地层盾构区间穿越既有铁路技术研究[J]. 铁道工程学报, 2020, 37(4):63-68. DU Hu. Research on the technology of shield tunneling through existing railway in weak stratum[J]. Journal of Railway Engineering Society, 2020, 37(4): 63-68.
[8] 任建喜,李龙,郑赞赞,等.黄土地区地铁盾构下穿铁路变形控制技术[J]. 铁道工程学报, 2013, 30(5):57-62. REN Jianxi, LI Long, ZHENG Zanzan, et al. Deformation control technology for the loess subway shield under-crossing railway[J]. Journal of Railway Engineering Society, 2013, 30(5):57-62.
[9] 孙捷城,周国锋,路林海,等. 济南地铁盾构隧道小曲线叠落下穿京沪高铁桥施工控制技术[J]. 施工技术, 2020, 49(1):61-66. SUN Jiecheng, ZHOU Guofeng, LU Linhai, et al. Construction control technology of shield intersected tunnel undercrossing Beijing-Shanghai high-speed railway viaduct with small radius curve in Jinan[J]. Construction Technology, 2020, 49(1): 61-66.
[10] 吴昌将,张子新,丁文其,等.盾构侧穿邻近古建筑的施工影响分析及保护措施加固效果的研究[J]. 岩土工程学报, 2012, 34(1):158-165. WU Changjiang, ZHANG Zixin, DING Wenqi, et al. Influences of construction of side-crossing shield tunnel on adjacent ancient architectures and reinforcement effect of protection measures[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1):158-165.
[11] 刘喆,何平,张安琪,等.盾构隧道施工过程及支护方式对高速铁路高架桥群桩基础影响分析[J].工程力学,2016,33(增刊1):219-226. LIU Zhe, HE Ping, ZHANG Anqi, et al. Analysis of effects of shield tunnel construction process and supporting ways on pile groups of high-speed railway viaduct[J]. Engineering Mechanics, 2016, 33(Suppl.1):219-226.
[12] 吴镇, 张秀山, 王磊. 小半径曲线叠落盾构隧道下穿京沪高铁隔离桩设置参数研究[J]. 铁道标准设计, 2020, 64(9):88-94. WU Zhen, ZHANG Xiushan, WANG Lei. Research on setting parameters of isolation pile of small radius curve stacking shield tunnel underpassing Beijing-Shanghai high-speed railway[J]. Railway Standard Design, 2020, 64(9): 88-94.
[13] 上海市勘察设计行业协会,上海现代建筑设计(集团)有限公司,上海建工(集团)总公司.基坑工程技术规范(上海市工程建设规范):DG/TJ08-61-2010[S].上海:上海标准定额发行站,2010.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[3] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[6] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[7] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[8] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[9] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[10] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[11] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[12] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[13] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[14] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[15] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn