Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (1): 75-81    DOI: 10.19952/j.cnki.2096-5052.2021.01.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
近距离下穿车站富水圆砾地层盾构隧道开挖面稳定性研究
肖鹏飞1,冯光福1,贾少东1,孟庆军1,王树英2,刘奥林2
1.南宁轨道交通集团有限责任公司, 广西 南宁 530000;2. 中南大学土木工程学院, 湖南 长沙 410075
Research on stability of excavation face of shield tunnel undercrossing station in water-rich gravel stratum
XIAO Pengfei1, FENG Guangfu1, JIA Shaodong1, MENG Qingjun1, WANG Shuying2, LIU Aolin2
1. Nanning Rail Transit Co., Ltd., Nanning 530000, Guangxi, China;
2. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China
下载:  PDF (6850KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 依托南宁市轨道交通5号线新—广区间下穿1号线广西大学站工程,利用FLAC3D软件对近距离下穿车站底板富水圆砾地层盾构隧道开挖面稳定性展开研究,探究支护应力比、地下水位对开挖面稳定性的影响,并给出下穿时合适的开挖面支护压力控制值,作为现场施工的技术指导,研究表明:随着支护应力比的减小,开挖面土体水平位移不断增加,其变形符合土体塑性区的发展趋势;富水圆砾地层开挖面失稳后破坏模式表现为开挖面前方为楔形状,破坏区域向前方和上方逐渐发展至既有车站结构底板处;开挖面失稳破坏后车站结构底板与底板下方土体形成临空面;随着地下水位的升高,开挖面发生失稳破坏的支护应力比增加,开挖面稳定性显著降低;下穿时应将土仓压力控制在111 kPa以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖鹏飞
冯光福
贾少东
孟庆军
王树英
刘奥林
关键词:  盾构隧道  开挖面稳定  超近距离下穿  数值模拟    
Abstract: Based on the project of Nanning Metro Line 5 undercrossing Guangxi University Station of Line 1 in Xinguang Section, FLAC3D software was used to study the stability of the excavation face of the shield tunnel undercrossing the water-rich gravel stratum of the station bottom plate at ultra-close distance. The influence of support stress ratio and groundwater level on the stability of excavation face was explored, and the appropriate supporting pressure control value of excavation face was given as the technical guidance for field construction. The research showed that with the decrease of the support stress ratio, the horizontal displacement of the soil on the excavation face increased continuously, and its deformation conformed to the development trend of the soil plastic zone. The failure mode of the excavation face in the water-rich gravel stratum was wedge-shaped ahead of the excavation, and the failure area gradually developed to the bottom plate of the existing station structure. After the instability and failure of the excavation face, the bottom plate of the station structure and the soil belowed the bottom plate form the free surface; with the increase of groundwater level, the supporting stress ratio of instability failure of excavation face increased, and the stability of excavation face decreased significantly. The earth pressure should be controlled above 111 kPa when crossing station.
Key words:  shield tunnel    face stability    ultra-close penetration    numerical simulation
收稿日期:  2020-12-31      修回日期:  2021-03-04      发布日期:  2021-03-20     
中图分类号:  U45  
基金资助: 国家自然科学基金项目(51778637)
作者简介:  肖鹏飞(1987— ),男,湖南攸县人,硕士,工程师,主要研究方向为土木工程.E-mail:3024363081@qq.com
引用本文:    
肖鹏飞, 冯光福, 贾少东, 孟庆军, 王树英, 刘奥林. 近距离下穿车站富水圆砾地层盾构隧道开挖面稳定性研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 75-81.
XIAO Pengfei, FENG Guangfu, JIA Shaodong, MENG Qingjun, WANG Shuying, LIU Aolin. Research on stability of excavation face of shield tunnel undercrossing station in water-rich gravel stratum. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 75-81.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I1/75
[1] BROMS B B, BENNERMARK H. Stability of clay at vertical openings[J]. Journal of Soil Mechanics and Foundations Division, 1967, 96(1): 71-94.
[2] JANSSEN H A. Versuche uber getreidedruck in silozellen[J]. Seitschrift Des Vereins Deutscher Ingenieure, XXX-IX, 1895, 35: 1045-1049.
[3] DAVIS E H, GUNN M J, MAIR R J, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Géotechnique, 1980, 30(4): 397-416.
[4] DE BUHAN P, CUVILLIER A, DORMIEUX L, et al. Face stability of shallow circular tunnels driven under the water table: a numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(1): 79-95.
[5] CHAMBON P, CORTÉ J F. Shallow tunnels in cohesionless soil: stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165.
[6] KIRSCH A.Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica, 2010, 5(1):43-62.
[7] TAKANO D, OTANI J, NAGATANI H, et al. Application of X-Ray CT on boundary value problems in geotechnical engineering: research on tunnel face failure[C] //Proceedings of the Geo-Congress.Atlanta, USA:the Geo-Institute of the ASCE, 2006.
[8] 陈仁朋,齐立志,汤旅军,等.砂土地层盾构隧道开挖面被动破坏极限支护力研究[J].岩石力学与工程学报,2013,32(增刊1):2877-2882. CHEN Renpeng, QI Lizhi, TANG Lüjun, et al. Study of limit supporting force of excavation face's passive failure of shield tunnels in sand strata[J].Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl.1):2877-2882.
[9] 邱龑,杨新安,徐前卫,等. 富水砂层盾构隧道开挖面稳定性及其失稳风险的分析[J].中国铁道科学, 2015, 36(6):55-62. QIU Yan, YANG Xinan, XU Qianwei, et al. Analysis on stability and instability risk of excavation face of shield tunnel in water-rich sand layer[J].China Railway Science, 2015, 36(6):55-62.
[10] 康志军,谭勇,李金龙. 基于流-固耦合的盾构隧道开挖面稳定性研究[J].隧道建设(中英文), 2017, 37(10): 1287-1295. KANG Zhijun, TAN Yong, LI Jinlong. Numerical study of working face stability of shield tunnel based on fluid-solid coupling effect[J].Tunnel Construction, 2017, 37(10): 1287-1295.
[11] 黄振恩,吴俊,张洋,等. 考虑流固耦合效应的盾构隧道开挖面稳定性研究[J].现代隧道技术, 2018,55(5):61-71. HUANG Zhen'en, WU Jun, ZHANG Yang, et al. Analysis of the stability of the shield tunnel excavation face considering fluid-solid coupling effect[J]. Modern Tunnelling Technology, 2018, 55(5):61-71.
[12] 秦建设.盾构施工开挖面变形与破坏机理研究[D].南京: 河海大学, 2005. QIN Jianshe. Study on face deformation and collapse of earth pressure shield tunnel[D]. Nanjing:Hohai University, 2005.
[13] 邱明明, 姜安龙, 舒勇. 城市地铁盾构施工地层变形三维数值模拟分析[J].防灾减灾工程学报, 2014,34(2): 161-167. QIU Mingming, JIANG Anlong, SHU Yong. Three-dimensional numerical simulation analysis of stratum deformation induced by subway shield construction[J].Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(2): 161-167.
[14] 付亚雄,贺雷,马险峰,等. 软黏土地层盾构隧道开挖面稳定性离心试验研究[J].地下空间与工程学报, 2019, 15(2): 387-393. FU Yaxiong, HE Lei, MA Xianfeng, et al. Centrifuge model tests on face stability of shield tunneling in soft clay[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 387-393.
[15] 亢晨钢. 盾构机密封舱压力分布数值模拟[D].大连:大连理工大学,2010. KANG Chengang. Numerical simulation of earth pressure distribution in head chamber of EPB shield machine[D]. Dalian:Dalian University of Technology, 2010.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[3] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[6] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[7] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[8] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[9] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[10] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[11] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[12] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[13] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[14] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[15] 刘维, 俞淼, 吴垠龙, 史培新, 吴奔. 矩形顶管开舱施工过程中地层稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(3): 92-98.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn