Please wait a minute...
 
隧道与地下工程灾害防治  2020, Vol. 2 Issue (3): 95-106    
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高水压水下盾构隧道管片结构破坏现象研究
封坤,何川,张力,郭文琦
西南交通大学交通隧道工程教育部重点实验室, 四川 成都 610031
Study on the segmental structure failure of underwater shield tunnel under high water pressure
FENG Kun, HE Chuan, ZHANG Li, GUO Wenqi
Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
下载:  PDF (15318KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 当前我国水下盾构隧道正朝着断面大型化发展,随之带来的大埋深、高水压等问题对管片结构的安全性带来了极大挑战,高水压作用下管片结构的承载性能与破坏特征一直备受关注。本研究从狮子洋隧道和苏通GIL特高压电力管廊工程等两座大断面盾构隧道原型管片的高水压破坏加载试验现象出发,分析高水压条件下盾构隧道管片结构的破坏特征与规律,在此基础上提出管片结构承载性能评价指标,并结合试验结果给出了控制参数建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
封坤
何川
张力
郭文琦
关键词:  盾构隧道  原型试验  高水压  破坏特征  评价指标    
Abstract: At present, the underwater shield tunnels in China are developing towards large-scale cross-sections, consequently, problems such as large buried depth and high waterpressure had brought great challenges to the safety of the segment lining. Accordingly, the load-bearing performance and failure characteristics of segment lining under high water pressure need to be investigated. In view of this, based on the experimental failure results of two prototype large-sectional segment linings used in the Shiziyang Tunnel and the Sutong GIL UHV Power Pipe Gallery Project, the failure characteristics of the large-section segment lining under high-water-pressure were clarified. In addition, the evaluation indexes for the load-bearing performance of the segment lining was proposed and the recommended control parameters based on the test results were given.
Key words:  shield tunnel    prototype test    high water pressure    failure characteristic    evaluation indexe
收稿日期:  2020-06-16      发布日期:  2020-09-20     
中图分类号:  U451+.4  
基金资助: 国家自然科学基金资助项目(52078430, 51878569)
作者简介:  封坤(1983— ),男,陕西延川人,博士,副教授,主要研究方向为现代盾构隧道技术与结构设计理论. E-mail:windfeng813@163.com
引用本文:    
封坤, 何川, 张力, 郭文琦. 高水压水下盾构隧道管片结构破坏现象研究[J]. 隧道与地下工程灾害防治, 2020, 2(3): 95-106.
FENG Kun, HE Chuan, ZHANG Li, GUO Wenqi. Study on the segmental structure failure of underwater shield tunnel under high water pressure. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 95-106.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2020/V2/I3/95
[1] 刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991: 36-38.
[2] 何川,封坤,晏启祥,等.水下盾构法铁路隧道管片衬砌结构的原型加载试验研究[J].中国工程科学,2012,14(10): 65-72. HE Chuan, FENG Kun, YAN Qixiang, et al. Prototype test study on mechanical characteristics of segmental lining structure of underwater railway shield tunnel[J].Engineering Science, 2012, 14(10): 65-72.
[3] LIU X, ZHANG Y M, BAO Y H. Full-scale experimental investigation on stagger effect of segmental tunnel linings[J].Tunnelling and Underground Space Technology, 2020, 102:103423.
[4] 封坤,何川,苏宗贤.南京长江隧道原型管片结构破坏试验研究[J].西南交通大学学报,2011,46(4): 564-571. FENG Kun, HE Chuan, SU Zongxian. Prototype test on failure characteristics of segmental lining structure for Nanjing Yangtze River Tunnel[J].Journal of Southwest Jiaotong University, 2011, 46(4): 564-571.
[5] 董新平.盾构衬砌整环破坏机理研究[J].岩土工程学报, 2014, 36(3):417-426. DONG Xinping. Failure mechanism of the full-ring for segmented tunnel lining[J].Chinese Journal of Geotechnical Engineering, 2014, 36(3): 417-426.
[6] 肖明清.我国水下盾构隧道代表性工程与发展趋势[J]. 隧道建设,2018,38(3):360-367. XIAO Mingqing. Representative projects and development trend of underwater shield tunnels in China[J]. Tunnel Construction, 2018, 38(3): 360-367.
[7] 张君禄,段峰虎,廖文来,等.湛江湾跨海盾构隧道管片现场监测试验研究[J].岩石力学与工程学报, 2014, 33(增刊1): 2878-2884. ZHANG Junlu, DUAN Fenghu, LIAO Wenlai, et al. Field monitoring experimental study of sea-crossing shield tunnel segment in Zhanjiang Bay[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl.1): 2878-2884.
[8] 李雪,周顺华,宫全美,等.大断面深埋高水压地铁盾构隧道周边土压力作用模式评价[J].岩土力学,2015,36(5):1415-1420. LI Xue, ZHOU Shunhua, GONG Quanmei, et al. Evaluation of earth pressure around a deeply buried metro shield tunnel with a large cross-section under high water pressure conditions[J]. Rock and Soil Mechanics, 2015, 36(5): 1415-1420.
[9] 陈中天,王飞,陶力铭,等.下穿黄河砂卵石地层盾构隧道管片结构受力特征现场测试[J]. 隧道建设(中英文), 2017, 37(增刊2): 147-153. CHEN Zhongtian, WANG Fei, TAO Liming, et al.In-situ study of mechanical characteristics of shield tunnel segment structure in sandy-cobble strata crossing Yellow River[J].Tunnel Construction, 2017, 37(Suppl.2): 147-153.
[10] 张丙武,张鹏,戴振华,等.河底地铁盾构隧道管片受力特征分析[J].现代隧道技术, 2020, 57(3): 85-90. ZHANG Bingwu, ZHANG Peng, DAI Zhenhua, et al. Analysis of the mechanical behavior of segments of the shield-driven metro tunnel beneath river bottom[J]. Modern Tunnelling Technology, 2020, 57(3): 85-90.
[11] 周济民,何川,肖明清,等.狮子洋水下盾构隧道衬砌结构受力的现场测试与计算分析[J].铁道学报,2012,34(7):115-121. ZHOU Jimin, HE Chuan, XIAO Mingqing, et al. Field test and numerical simulation of mechanics of segment lining of Shiziyang underwater shield tunnel[J].Journal of the China Railway Society, 2012, 34(7): 115-121.
[12] 彭博.水下盾构隧道管片衬砌结构渐进性破坏机理研究[D].成都:西南交通大学,2015. PENG Bo. Research on progressive damage of segment lining of underwater shield tunnel[D].Chengdu: Southwest Jiaotong University, 2015.
[13] 张雪金.强透水砂卵石地层盾构管片受力特性研究[D].成都:西南交通大学,2016. ZHANG Xuejin. Study on force characteristics of shield segment in sand gravel layer with serious leakage [D]. Chengdu: Southwest Jiaotong University, 2016.
[14] 徐冲. 首穿黄河散粒体地层盾构管片力学行为研究[J]. 铁道工程学报, 2020, 37(6): 64-69. XU Chong. Research on the mechanical behavior of shield lining on granular soil across Yellow River[J]. Journal of Railway Engineering Society, 2020, 37(6): 64-69.
[15] 王士民,姚佳兵,何祥凡,等.水压对盾构管片衬砌力学特征与破坏形态的影响模型试验研究[J].土木工程学报,2018,51(4):111-120. WANG Shimin, YAO Jiabing, HE Xiangfan, et al.Research on the mechanical property and failure mode of shield tunnels with different hydraulic pressure by model test[J]. China Civil Engineering Journal, 2018, 51(4): 111-120.
[16] 王彪.上海长江隧道衬砌结构整环试验与研究[D].上海:同济大学,2007. WANG Biao. Analysis and test for lining whole wreath of Shanghai Chongming tunnel[D].Shanghai:Tongji University, 2007.
[17] 封坤,何川,苏宗贤.南京长江隧道管片衬砌结构原型加载试验[J].中国公路学报,2013(1): 135-143.. FENG Kun, HE Chuan, SU Zongxian. Prototype loading test on segmental lining structure of Nanjing Yangtze River Tunnel[J].China Journal of Highway and Transport, 2013(1): 135-143.
[18] 柳献,张浩立,鲁亮,等.超载工况下盾构隧道结构承载能力的试验研究[J].地下工程与隧道,2013(4):10-15. LIU Xian, ZHANG Haoli, LU Liang, et al. Experimental study on load bearing capacity of shield tunnel structure under overload condition[J].Underground Engineering and Tunnels, 2013(4): 10-15.
[19] 柳献, 张雨蒙, 王如路.地铁盾构隧道衬砌结构变形及破坏探讨[J].土木工程学报, 2020,53(5): 118-128. LIU Xian, ZHANG Yumeng, WANG Rulu. Discussion on deformation and failure of segmental metro tunnel linings[J]. China Civil Engineering Journal, 2020, 53(5): 118-128.
[20] 刘学增,蔡光远,杨帆,等.破碎围岩错缝拼装盾构隧道结构承载性能与变形控制指标[J].中国公路学报,2017,30(8):57-65. LIU Xuezeng, CAI Guangyuan, YANG Fan, et al. Structural bearing behavior and deformation controlling indictators for straggered jointed shield tunnel lining in fractured surrounding rock[J].China Journal of Highway and Transport, 2017, 30(8):57-65.
[21] 王如路,张冬梅.超载作用下软土盾构隧道横向变形机理及控制指标研究[J].岩土工程学报,2013,35(6):1092-1101. WANG Rulu, ZHANG Dongmei. Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J].Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1092-1101.
[22] 张冬梅,邹伟彪,闫静雅.软土盾构隧道横向大变形侧向注浆控制机理研究[J].岩土工程学报,2014,36(12):2203-2212. ZHANG Dongmei, ZOU Weibiao, YAN Jingya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J].Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212.
[23] 董正方,张继康,蔡宝占,等.地震作用下盾构隧道变形性能试验研究[J].世界地震工程,2019,35(4):125-132. DONG Zhengfang, ZHANG Jikang, CAI Baozhan, et al. Experimental study on deformation performance of shield tunnel under seismic action[J]. World Earthquake Engineering, 2019, 35(4): 125-132.
[24] 毕湘利,柳献,王秀志,等.通缝拼装盾构隧道结构极限承载力的足尺试验研究[J].土木工程学报,2014,47(10):117-127. BI Xiangli, LIU Xian, WANG Xiuzhi, et al.Experimental investigation on the ultimate bearing capacity of continuous-jointed segmental tunnel linings[J].China Civil Engineering Journal, 2014, 47(10): 117-127.
[25] 封坤.大断面水下盾构隧道管片衬砌结构的力学行为研究[D].成都:西南交通大学,2011. FENG Kun. Research on mechanical behavior of segmental lining structure for underwater shield tunnel with large cross-section[D].Chengdu: Southwest Jiaotong University, 2011.
[26] 梁坤,封坤,肖明清,等.水压作用对通缝拼装管片结构力学性能的影响研究[J].岩土工程学报,2019,41(11):2037-2045. LIANG Kun, FENG Kun, XIAO Mingqing, et al. Water-pressure action on structural behaviors of straight assembling segmental linings of underwater shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2037-2045.
[27] 何川,封坤,苏宗贤.大断面水下盾构隧道原型结构加载试验系统的研发与应用[J]. 岩石力学与工程学报,2011,30(2):254-266. HE Chuan, FENG Kun, SU Zongxian. Development and application of loading test system of prototype structure for underwater shield tunnel with large cross-section[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 254-266.
[28] ZHANG Li, FENG Kun, LI Maoran, et al. Analytical method regarding compression-bending capacity of segmental joints: theoretical model and verification[J]. Tunnelling and Underground Space Technology, 2019(93):103083.
[29] PARK R, PAULAY T. Reinforced concrete structures[M]. New York, USA: John Wiley & Sons, 1975.
[1] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[2] 蒋宇静, 王兴达, 张学朋. 远场地震作用下跨断层深埋隧道结构的动力变形破坏特征[J]. 隧道与地下工程灾害防治, 2023, 5(3): 1-11.
[3] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[4] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[5] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[6] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[7] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[8] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[9] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[10] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[11] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[12] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[13] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[14] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[15] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn