Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (1): 90-98    DOI: 10.19952/j.cnki.2096-5052.2025.01.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
观光隧道烟气流动特性研究
赵旭明1,雷文君1*,蔡明庆2,邰传民1,张林华1
Study on flue gas flow characteristics of sightseeing tunnels
ZHAO Xuming1, LEI Wenjun1*, CAI Mingqing2, TAI Chuanmin1, ZHANG Linhua1
1. School of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China;
2. Jinan High-tech Holding Group Co., Ltd., Jinan 250101, Shandong, China
下载:  PDF (7205KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究基于数值计算方法,探讨了某景区观光隧道在不同火灾情境下的烟气流动特性。研究发现,火源位置对火焰蔓延速度有显著影响,起火点靠近隧道入口时,火焰向消防电梯端蔓延速度较快;蔓延初期,下表面的扩散速度大于上表面。随着火源强度的增加,观光屏的引燃时间逐渐缩短,从52 s减少至29 s,其中火源强度从0.5 MW增加至1.0 MW时,引燃时间缩短约20 s,疏散时间大幅提前。研究还表明,当火源强度小于1.0 MW时,电气线路自燃导致隧道达到人员安全疏散临界点的时间较引燃更短,为92 s,提前约20%。然而,火源超过1.0 MW时,电气线路被引燃所引发的火灾危害更为严重。虽然电梯前室的正压送风能在一定程度上抑制烟气扩散,但消防电梯端的疏散条件仍较差,CO质量浓度最高可达920 mg/m3,无法满足人员疏散要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵旭明
雷文君
蔡明庆
邰传民
张林华
关键词:  观光隧道  火灾原因  烟气流动特性  起火位置  数值模拟    
Abstract: In this research,the smoke flow characteristics of a scenic sightseeing tunnel in different fire scenarios were investigated based on numerical calculation methods. It was found that the location of the fire source had a significant effect on the flame spreading speed, and the flame spread faster to the fire elevator end when the fire point was close to the entrance of the tunnel; at the early stage of spreading, the diffusion speed of the lower surface was larger than that of the upper surface. As the intensity of the fire source increased, the ignition time of the sightseeing screen was gradually shortened from 52 s to 29 s. When the intensity of the fire source increased from 0.5 MW to 1.0 MW, the ignition time was shortened by about 20 s, and the evacuation time was greatly advanced. The research also showed that when the intensity of the fire source was less than 1.0 MW, the time to reach the critical point for safe evacuation of the tunnel due to spontaneous ignition of the electrical wiring was even shorter than that due to ignition, at 92 s, which was about 20% earlier. However, the fire hazard caused by the ignition of electrical wiring was more serious when the source of ignition exceeded 1.0 MW. Although the positive-pressure air supply in the elevator vestibule suppressed the spread of smoke to some extent, the evacuation conditions at the fire elevator end were still poor, with CO concentrations of up to 920 mg/m3, which could not meet the evacuation requirements.
Key words:  sightseeing tunnel    cause of fire    smoke flow characteristics    location of the fire    numerical simulationReceived: 2025-01-10    Revised: 2025-02-03    Accepted: 2025-03-10    Published: 2025-03-20
发布日期:  2025-03-28     
中图分类号:  U458  
基金资助: 中国中铁股份有限公司科技研究开发计划重大课题资助项目(2021-重大-14)
作者简介:  王东伟(1981— ),男,河南上蔡人,正高级工程师,硕士,主要研究方向为地下工程、隧道通风及防灾疏散. E-mail:94639055@qq.com
引用本文:    
赵旭明,雷文君,蔡明庆,邰传民,张林华. 观光隧道烟气流动特性研究[J]. 隧道与地下工程灾害防治, 2025, 7(1): 90-98.
ZHAO Xuming, LEI Wenjun, CAI Mingqing, TAI Chuanmin, ZHANG Linhua. Study on flue gas flow characteristics of sightseeing tunnels. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 90-98.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I1/90
[1] 赵维刚, 梅晓腾, 张骞, 等. 基于数据关联的兰新线某隧道应力状态感知与预测[J]. 铁道学报, 2023, 45(9): 195-202. ZHAO Weigang, MEI Xiaoteng, ZHANG Qian, et al. Stress state perception and prediction of tunnel in Lanzhou: Xinjiang Railway based on data association[J]. Journal of the China Railway Society, 2023, 45(9): 195-202.
[2] 孙振宇, 赵维刚, 张耀, 等. 隧道长度对烟气分布影响数值模拟[J]. 消防科学与技术, 2023, 42(2): 212-216. SUN Zhenyu, ZHAO Weigang, ZHANG Yao, et al. Numerical study on the effect of tunnel length on smoke spread[J]. Fire Science and Technology, 2023, 42(2): 212-216.
[3] 曾晓亮, 李富祥, 李明伟, 等. 电缆隧道火灾事故特点与灭火系统研究综述[J]. 四川电力技术, 2022, 45(4): 55-59. ZENG Xiaoliang, LI Fuxiang, LI Mingwei, et al. Research review on characteristics of cable tunnel fire accident and fire extinguishing system[J]. Sichuan Electric Power Technology, 2022, 45(4): 55-59.
[4] 孙振宇. 长大隧道火灾烟气蔓延特性及人员疏散安全性分析[D]. 石家庄: 石家庄铁道大学, 2023. SUN Zhenyu. Analysis of smoke spread characteristics and evacuation safety of long tunnel fire[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023.
[5] HU L H, HUO R, WANG H B, et al. Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling[J]. Building and Environment, 2007, 42(11): 3905-3915.
[6] HAN J Q, LIU F, WANG F, et al. Full-scale experimental investigation on smoke spreading and thermal characteristic in a transversely ventilated urban traffic link tunnel[J]. International Journal of Thermal Sciences, 2021, 170: 107130.
[7] GUO C, ZHANG T, GUO Q H, et al. Full-scale experimental study on fire characteristics induced by double fire sources in a two-lane road tunnel[J]. Tunnelling and Underground Space Technology, 2023, 131: 104768.
[8] KALECH B, BOUTERRA M, ELCAFSI A. Numerical analysis of smoke flow under the effect of longitudinal airflow in a tunnel fire[J]. Fire and Materials, 2020, 44(8): 1033-1043.
[9] 吴照国, 杜芳, 包健康, 等. 隧道坡度对电缆隧道火灾蔓延影响研究[J]. 现代隧道技术, 2021, 58(增刊1):558-565. WU Zhaoguo, DU Fang, BAO Jiankang, et al. Study on the influence of tunnel slope on fire spread in cable tunnels[J]. Modern Tunnels Technology, 2021, 58(Suppl.1): 558-565.
[10] DELICHATSIOS M, DELICHATSIOS M. Upward flame spread and critical conditions for PE/PVC cables in a tray configuration[J]. Fire Safety Science, 1994, 4: 433-444.
[11] 梁凯. 城市地下综合管廊电缆火蔓延行为及烟流特性研究[D]. 徐州: 中国矿业大学, 2020. LIANG Kai. Study on the spread behavior and smoke flow characteristics of cable fire in urban underground utility tunnel[D]. Xuzhou: China University of Mining and Technology, 2020.
[12] 中华人民共和国公安部.建筑设计防火规范(2018年版): GB 50016—2014[S].北京:中国计划出版社,2018.
[13] 杨贤涛. 浅谈电缆火灾[J]. 中国科技信息, 2011(9): 181, 183.
[14] LEI W J, ZHENG Z J, RONG C L, et al. Study on fire smoke control in evacuation passageways on the top floor of an atrium involving breathing zones combined with underfloor makeup air supplementation[J]. Safety Science, 2022, 153: 105807.
[15] U.S. Department of the Interior.National environmental policy act[S]. Washington, D.C., USA: U.S. Government Publishing Office, 1969.
[16] 陈俊沣, 程辉航, 魏旋, 等. 隧道火灾全尺寸实验中温度测量误差[J]. 清华大学学报(自然科学版), 2022, 62(10): 1618-1625. CHEN Junfeng, CHENG Huihang, WEI Xuan, et al. Temperature measurement errors in full- scale tunnel fire experiments[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1618-1625.
[17] HU L H, HUO R, CHOW W K. Studies on buoyancy-driven back-layering flow in tunnel fires[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1468-1483.
[18] HU L H, FONG N K, YANG L Z, et al. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data[J]. Journal of Hazardous Materials, 2007, 140(1/2): 293-298.
[19] 张耀, 尹艺蒙, 郭庆华, 等. 高海拔长大隧道火灾烟气流动特征研究[J]. 地下空间与工程学报, 2024, 20(增刊2): 907-915. ZHANG Yao, YIN Yimeng, GUO Qinghua, et al. Study on smoke flow characteristics of long tunnel fire at high altitude[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(Suppl.2): 907-915.
[20] U.S. Department of Labor, Occupational Safety and Health Administration. Occupational safety and health guidelines for carbon monoxide(OSHA)[S]. Washington, D.C., USA: U.S. Government Publishing Office, 2005.
[21] National Fire Protection Association. Standard for fixed guideway transit and passenger rail systems(NFPA 130)[S].Quincy, USA: National Fire Protection Association, 2017.
[22] RIE D H, HWANG M W, KIM S J, et al. A study of optimal vent mode for the smoke control of subway station fire[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 300-301.
[23] 公安部四川消防研究所. 城市隧道防火设计规范: GB 51251—2017[S]. 北京:中国计划出版社, 2017.
[1] 丁建奇,王陈成,朱向闪,张翔,傅刚,徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[2] 苟晓军,赵金泉,季玮,花晓鸣,范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[3] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[4] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[5] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[6] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[7] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[8] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[9] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[10] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[11] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[12] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[13] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[14] 张亮亮. 纵向排烟V形坡隧道火灾烟流特性现场火灾试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 71-79.
[15] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn