Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (2): 49-60    DOI: 10.19952/j.cnki.2096-5052.2021.02.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
采用管棚预支护方法的盾构穿越既有地铁隧道变形特征及加固影响实测分析
姜叶翔1,周奇辉2,羊逸君1,苏凤阳1,刘尊景2,张霄3,丁智3
1. 杭州市地铁集团有限责任公司, 浙江 杭州 310017;2. 中国电建集团华东勘测设计研究院有限公司, 浙江 杭州 311122;3. 浙大城市学院土木工程系, 浙江 杭州 310015)
Reinforcement effect and actual measurement analysis of new shield tunnel crossing existing metro tunnel with shed pre-supporting method
JIANG Yexiang1, ZHOU Qihui2, YANG Yijun1, SU Fengyang1, LIU Zunjing2, ZHANG Xiao3, DING Zhi3
1. Hangzhou Metro Group Co., Ltd., Hangzhou 310017, Zhejiang, China;
2. PowerChina Huadong Engineering Co., Ltd., Hangzhou 311122, Zhejiang, China;
3. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, Zhejiang, China
下载:  PDF (14687KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 开展新建盾构隧道穿越既有地铁隧道影响机制的理论分析,收集并统计国内15个新建盾构隧道穿越既有地铁工程实例及相应实测数据,表明新建盾构近距离穿越易引起既有地铁隧道发生隆沉变形,最大竖向位移主要集中在±5 mm范围内,且既有地铁隧道变形与两隧道之间净距、加固情况和土质条件密切相关。基于杭州新建盾构地铁2号线近距离下穿地铁1号线工程,对盾构穿越全过程中既有地铁隧道变形规律进行深入探讨。同时,工程所采用的管棚结合水平旋喷加固既有地铁1号线下方土体,可有效减少既有地铁隧道的变形。穿越施工过程中应通过既有地铁实测变形数据对盾构施工参数进行实时调整,保证新建盾构安全穿越。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜叶翔
周奇辉
羊逸君
苏凤阳
刘尊景
张霄
丁智
关键词:  盾构隧道  穿越  变形  监测  加固    
Abstract: The theoretical analysis of the mechanism on the new shield tunnel crossing the existing subway tunnel was carried out, the 15 project instances and the corresponding measured data of new shield tunnels crossing the existing metro was collected and counted. The results showed that the uplift and settlement deformation of the existing subway tunnel were easily caused by new shield short-distance crossing, the maximum vertical displacement was mainly concentrated in the range of ±5 mm, and the deformation of the existing subway tunnel was closely related to the clearance between the two tunnels, reinforcement and soil conditions. Based on the project of Hangzhou Metro Line 2 closely under-crossing Metro Line 1, the deformation of existing subway tunnel during the whole process of shield tunneling was deeply discussed. Meanwhile, the combination of pipe shed and rotary jet reinforcement below existing Metro Line 1 could effectively reduce the deformation of the existing subway tunnel. In the process of crossing construction, the shield construction parameters should be adjusted in real time through the measured deformation data of the existing subway tunnel, so as to ensure the safety of the new shield tunneling.
Key words:  shield tunneling    crossing    deformation    monitoring    reinforcement
收稿日期:  2021-03-31      修回日期:  2021-06-05      发布日期:  2021-06-20     
中图分类号:  TU43  
基金资助: 浙江省重点研发计划项目(2017C03020,2020C01102);杭州市科技计划项目(20191203B44)
作者简介:  姜叶翔(1979— ),男,浙江常山人,硕士,高级工程师,主要研究方向为地铁保护及工程建设安全管理.E-mail:38919553@qq.com
引用本文:    
姜叶翔, 周奇辉, 羊逸君, 苏凤阳, 刘尊景, 张霄, 丁智. 采用管棚预支护方法的盾构穿越既有地铁隧道变形特征及加固影响实测分析[J]. 隧道与地下工程灾害防治, 2021, 3(2): 49-60.
JIANG Yexiang, ZHOU Qihui, YANG Yijun, SU Fengyang, LIU Zunjing, ZHANG Xiao, DING Zhi. Reinforcement effect and actual measurement analysis of new shield tunnel crossing existing metro tunnel with shed pre-supporting method. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 49-60.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I2/49
[1] 王如路, 张冬梅. 超载作用下软土盾构隧道横向变形机理及控制指标研究[J]. 岩土工程学报, 2013, 35(6): 1092-1101. WANG Rulu, ZHANG Dongmei. Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1092-1101.
[2] 魏新江, 张默爆, 丁智, 等. 盾构穿越对既有地铁隧道影响研究现状与展望[J]. 岩土力学, 2020, 41(增刊2): 442-460. WEI Xinjiang, ZHANG Mobao, DING Zhi, et al. Research status and prospect of shield tunneling effect on preexisting metro tunnels and controlling technology[J]. Rock and Soil Mechanics, 2020, 41(Suppl.2): 442-460.
[3] LIAO S M, LIU J H, WANG R L, et al. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 454-465.
[4] 张治国, 张孟喜. 软土城区土压平衡盾构上下交叠穿越地铁隧道的变形预测及施工控制[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3428-3439. ZHANG Zhiguo, ZHANG Mengxi. Deformation prediction of subway tunnel induced by EPB shield in soft clay during above and down overlapped traversing process and its construction control[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl.2): 3428-3439.
[5] JIN D L, YUAN D J, LIU S Y, et al. Performance of existing subway tunnels undercrossed by four closely spaced shield tunnels[J]. Journal of Performance of Constructed Facilities, 2019, 33(1): 04018099.
[6] 张琼方, 夏唐代, 丁智, 等. 盾构近距离下穿对已建地铁隧道的位移影响及施工控制[J]. 岩土力学, 2016, 37(12): 3561-3568. ZHANG Qiongfang, XIA Tangdai, DING Zhi, et al. Effect of nearby undercrossing tunneling on the deformation of existing metro tunnel and construction control[J]. Rock and Soil Mechanics, 2016, 37(12): 3561-3568.
[7] 张琼方, 林存刚, 丁智, 等. 盾构近距离下穿引起已建地铁隧道纵向变形理论研究[J]. 岩土力学, 2015, 36(增刊1): 568-572. ZHANG Qiongfang, LIN Cungang, DING Zhi, et al. Theoretical analysis of vertical deformation of existing metro tunnel induced by shield tunneling under-passing in a short distance[J]. Rock and Soil Mechanics, 2015, 36(Suppl.1): 568-572.
[8] 魏纲, 俞国骅, 杨波. 新建盾构隧道下穿既有隧道剪切错台变形计算[J]. 湖南大学学报(自然科学版), 2018, 45(9): 103-112. WEI Gang, YU Guohua, YANG Bo. Calculation of existing shield tunnel shearing dislocation platform deformation due to undercrossing new shield tunnel undercrossing[J]. Journal of Hunan University(Natural Sciences), 2018, 45(9): 103-112.
[9] 魏纲, 俞国骅, 杨波. 新建隧道上穿既有隧道引起的剪切错台变形研究[J]. 自然灾害学报, 2018, 27(4): 50-58. WEI Gang, YU Guohua, YANG Bo. Study on shearing dislocation platform deformation of existing tunnel due to construction of above-crossing new tunnel[J]. Journal of Natural Disasters, 2018, 27(4): 50-58.
[10] LIN X T, CHEN R P, WU H N, et al. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle[J]. Tunnelling and Underground Space Technology, 2019, 89: 78-90.
[11] 丁传松, 杨兴富. 盾构近距离下穿对已运营隧道的变形分析[J]. 施工技术, 2012, 41(1): 84-86. DING Chuansong, YANG Xingfu. Analysis of shield tunnel undercrossing nearby operation tunnels[J]. Construction Technology, 2012, 41(1): 84-86.
[12] CHEN R P, LIN X T, KANG X, et al. Deformation and stress characteristics of existing twin tunnels induced by close-distance EPBS under-crossing[J]. Tunnelling and Underground Space Technology, 2018, 82: 468-481.
[13] 李磊, 张孟喜, 吴惠明, 等. 近距离多线叠交盾构施工对既有隧道变形的影响研究[J]. 岩土工程学报, 2014, 36(6): 1036-1043. LI Lei, ZHANG Mengxi, WU Huiming, et al. Influence of short-distance multi-line overlapped shield tunnelling on deformation of existing tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1036-1043.
[14] 汪洋, 何川, 曾东洋, 等. 盾构隧道正交下穿施工对既有隧道影响的模型试验与数值模拟[J]. 铁道学报, 2010, 32(2): 79-85. WANG Yang, HE Chuan, ZENG Dongyang, et al. Model test and numerical simulation of influence of perpendicular undercross shield tunnel construction on existing tunnel[J]. Journal of the China Railway Society, 2010, 32(2): 79-85.
[15] 梁荣柱, 夏唐代, 胡军华, 等. 新建隧道近距离上穿对既有地铁隧道纵向变形影响分析[J]. 岩土力学, 2016, 37(增刊1): 391-399. LIANG Rongzhu, XIA Tangdai, HU Junhua, et al. Analysis of longitudinal displacement of existing metro tunnel due to construction of above-crossing new tunnel in close distance[J]. Rock and Soil Mechanics, 2016, 37(Suppl.1): 391-399.
[16] JIN D L, YUAN D J, LI X G, et al. An in-tunnel grouting protection method for excavating twin tunnels beneath an existing tunnel[J]. Tunnelling and Underground Space Technology, 2018, 71: 27-35.
[17] 陈仁朋, 张品, 刘湛, 等. MJS水平加固在盾构下穿既有隧道中应用研究[J]. 湖南大学学报(自然科学版), 2018, 45(7): 103-110. CHEN Renpeng, ZHANG Pin, LIU Zhan, et al. Application study of MJS horizontal column reinforcement in shield tunneling[J]. Journal of Hunan University(Natural Sciences), 2018, 45(7): 103-110.
[18] ZHANG Q F. Field observation and theoretical study on an existing tunnel underpassed by new twin tunnels[J]. Advances in Civil Engineering, 2018:1598672.
[19] 姚海波. 大断面隧道浅埋暗挖法下穿既有地铁构筑物施工技术研究[D]. 北京: 北京交通大学, 2005. YAO Haibo. Research on construction technology of large section tunnel crossing under the existing subway tunnel by means of shallow tunneling method[D]. Beijing: Beijing Jiaotong University, 2005.
[20] 邓喜. 盾构穿越运营中地铁隧道上方的抗浮技术[J]. 上海建设科技, 2011(4): 16-18. DENG Xi. Anti-floating technology of shield tunneling above subway tunnel in operation[J]. Shanghai Construction Technology, 2011(4): 16-18.
[21] 丁传松, 杨兴富. 盾构近距离上穿越对已运营隧道的影响分析[J]. 施工技术, 2009, 38(1):48-50. DING Chuansong, YANG Xingfu. Influence analysis on shield tunnel up-crossing nearby built tunnel[J]. Construction Technology, 2009, 38(1): 48-50.
[22] 朱蕾, 黄宏伟. 盾构近距离上穿运营隧道的实测数据分析[J]. 浙江大学学报(工学版), 2010, 44(10): 1962-1966. ZHU Lei, HUANG Hongwei. Monitoring data analysis of disturbing effect caused by shield-driven over operating tunnel[J]. Journal of Zhejiang University(Engineering Science), 2010, 44(10): 1962-1966.
[23] 许满吉. 盾构区间近距离上穿既有地铁隧道施工技术研究[J]. 施工技术, 2017, 46(增刊1): 767-769. XU Manji. Construction technology of shielding close above-crossing existing subway tunnel[J]. Construction Technology, 2017, 46(Suppl.1): 767-769.
[24] 梁霄. 盾构超近距离下穿既有地铁盾构区间工程监测实例研究[D]. 北京: 中国地质大学, 2015. LIANG Xiao. Shield close crossing under the existing subway shield sector project case research[D]. Beijing: China University of Geosciences, 2015.
[25] 朱蕾, 赵敬妍. 盾构近距离下穿对上覆已建隧道影响的实测研究[J]. 地下空间与工程学报, 2014, 10(3): 656-662. ZHU Lei, ZHAO Jingyan. Monitoring data analysis of shield-driven construction undercrossing the existing tunnel in a short distance[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(3): 656-662.
[26] 梁建波. 盾构下穿地铁隧道施工中对既有隧道沉降影响的分析[D]. 广州: 广州大学, 2016. LIANG Jianbo. Study on the effect of construction of undercrossing shield tunnel on the existing shield tunnel[D]. Guangzhou: Guangzhou University, 2016.
[27] 李东海,刘军,萧岩,等. 盾构隧道斜交下穿地铁车站的影响与监测研究[J]. 岩石力学与工程学报, 2009,28(增刊1): 3186-3192. LI Donghai, LIU Jun, XIAO Yan, et al. Research on influence and monitoring of shield tunnel obliquely crossing beneath existing subway station[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Suppl.1): 3186-3192.
[28] 邵华. 盾构近距离穿越对邻近地铁隧道的影响及其工程对策研究[D]. 上海: 同济大学, 2005. SHAO Hua. Influence of shield near distance crossing on adjacent subway tunnel and engineering countermeasures[D]. Shanghai: Tongji University, 2005.
[29] 胡群芳,黄宏伟. 盾构下穿越已运营隧道施工监测与技术分析[J]. 岩土工程学报, 2006, 28(1): 42-47. HU Qunfang, HUANG Hongwei. Analysis and monitoring on shield tunneling under existing adjacent tunnel[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 42-47.
[30] 马云新. 北京地铁盾构近距离下穿地铁运营盾构隧道施工[J]. 建筑技术, 2015, 46(3): 272-275. MA Yunxin. Construction technique of shield tunnel above nearby subway line[J]. Architecture Technology, 2015, 46(3): 272-275.
[31] 陈湘生, 李兴. 复杂环境下盾构下穿运营隧道综合技术[M]. 北京: 中国铁道出版社, 2011.
[32] 刘健美. 盾构施工下穿既有地铁区间隧道分析[J]. 山西建筑, 2009,35(17): 297-298. LIU Jianmei. On analysis of shield construction through existing subway in running tunnel[J]. Shanxi Architecture, 2009, 35(17): 297-298.
[33] 石建泽. 某盾构下穿北京地铁双线盾构区间结构变形分析及控制研究[D]. 北京: 北京交通大学, 2014. SHI Jianze. Research on the structure deformation and control under the conditions of shield tunnel undercrossing the Beijing subway double shield section[D]. Beijing: Beijing Jiaotong University, 2014.
[34] 魏纲. 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34(5): 1421-1428. WEI Gang. Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1421-1428.
[35] 伍振志,傅志锋,王静,等.浅埋松软地层开挖中管棚注浆法的加固机理及效果分析[J]. 岩石力学与工程学报, 2005, 24(6): 1025-1029. WU Zhenzhi, FU Zhifeng, WANG Jing, et al. Study of support mechanism and effect of shed-pipe grouting technology for tunneling construction in shallow-buried soft stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 1025-1029.
[1] 裴超, 肖勇, 朱智勇, 刘艳萍, 杨文波, 赵亮亮. 复杂应力环境中隧道大变形特征与形变控制[J]. 隧道与地下工程灾害防治, 2023, 5(2): 89-98.
[2] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[3] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[4] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[5] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[6] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[7] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[8] 戴军, 杨鑫, 王建军, 仇文革, 朱麒. 限阻耗能型支护在大变形双线铁路隧道中的应用[J]. 隧道与地下工程灾害防治, 2022, 4(4): 44-51.
[9] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[10] 王明耀, 鲁义强, 贺飞, 李潮. 软岩大变形分类分级方法及TBM适应性[J]. 隧道与地下工程灾害防治, 2022, 4(4): 79-90.
[11] 龚秋明, 谢兴飞, 黄流, 兴海, 吴根生. 引绰济辽工程二标隧洞段TBM滚刀磨损规律[J]. 隧道与地下工程灾害防治, 2022, 4(4): 1-10.
[12] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[13] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[14] 龙道选, 王凯, 何红员, 张海东, 王长虹. 饱和粉砂地层中联络通道冻结法在水流-盐分共同作用下的施工监测方法[J]. 隧道与地下工程灾害防治, 2022, 4(3): 107-114.
[15] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn