Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (3): 58-71    DOI: 10.19952/j.cnki.2096-5052.2025.03.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
三向围压与液氧爆破荷载耦合作用下红砂岩损伤破裂特征研究
王雁冰1,张芳平1,李守业2,3,彭会椿4,雷振5
1.中国矿业大学(北京)力学与土木工程学院, 北京 100083;2.紫金矿业集团股份有限公司, 福建 上杭 364024;3.新疆紫金锌业有限公司, 新疆 乌恰 845450;4.中国葛洲坝集团第三工程有限公司, 陕西 西安 710077;5.贵州理工学院, 贵州 贵阳550025
Research on the damage and fracture characteristics of red sandstone under the coupling effect of triaxial confining pressure and liquid oxygen blasting load
WANG Yanbing1, ZHANG Fangping1, LI Shouye2,3, PENG Huichun4, LEI Zhen5
1. School of Mechanics and Civil Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
2. Zijin Mining Group Co., Ltd., Shanghang 364024, Fujian, China;
3. Xinjiang Zijin Zinc Industry Co., Ltd., Uqia 845450, Xinjiang, China;
4. China Gezhouba Group No.3 Engineering Co., Ltd., Xi'an 710077, Shaanxi, China;
5. Guizhou Institute of Technology, Guiyang 550025, Guizhou, China
下载:  PDF (13203KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为弥补液氧爆破技术理论研究中围压耦合作用分析的不足,通过现场试验与LS-DYNA数值模拟相结合,利用液压真三轴加载系统,系统研究红砂岩试件的损伤演化规律。结果表明:围压显著影响爆破效果,无围压时裂纹长且分散,而围压增加则抑制裂纹扩展,使爆破能量集中、裂纹方向明确且数量减少;试件底部漏斗效应受多种因素影响且围压改变其几何参数,应变峰值与破坏现象相关且围压增加抑制应变增长;数值模拟进一步揭示岩体应力与损伤演化规律,显示围压抑制损伤扩展、降低钻孔周围能量峰值并使能量衰减变缓。本研究揭示了围压对液氧爆破损伤破裂特征的关键调控作用,为深部高应力岩石爆破提供了理论依据与实践参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雁冰
张芳平
李守业
彭会椿
雷振
关键词:  液氧破岩  分形维数  应变峰值  损伤分析  数值模拟    
Abstract: To address the deficiencies in the theoretical analysis of confining pressure coupling effects in liquid oxygen blasting technology, field experiments and LS-DYNA numerical simulations were combined. A hydraulic true triaxial loading system was employed to systematically investigate the damage evolution patterns of red sandstone specimens. The results demonstrated that blasting effectiveness was significantly influenced by confining pressure. Under unconfined conditions, cracks were elongated and dispersed. As confining pressure was increased, crack propagation was suppressed, blasting energy was concentrated, crack directions were clarified, and crack quantities were reduced. The funnel effect at specimen bases was affected by multiple factors, and geometric parameters were altered by confining pressure. Strain peaks were correlated with failure phenomena, and strain growth was inhibited under elevated confining pressures. Through numerical simulations, stress and damage evolution in rock masses were further revealed. Confining pressure was shown to suppress damage propagation, reduce peak energy concentrations around boreholes, and slow energy attenuation. This study elucidated the critical regulatory role of confining pressure on damage-fracture characteristics in liquid oxygen blasting, providing theoretical foundations and practical references for blasting in deep high-stress rock masses.
Key words:  liquid oxygen rock breaking    fractal dimension    peak strain    damage analysis    numerical simulationReceived:2025-02-18    Revised:2025-04-23    Accepted:2025-05-15    Published:2025-09-20
发布日期:  2025-09-19     
中图分类号:  TU45  
  TD235  
基金资助: 国家自然科学基金铁路基础研究联合基金资助项目(U2468219);中央高校基本科研业务费专项资助项目(2025JCCXLJ01);深部煤炭安全开采与环境保护全国重点实验室开放基金资助项目(HNKY2024YB103)
作者简介:  王雁冰(1987— ),男,山东潍坊人,副教授,博士生导师,博士,主要研究方向为岩石动力学和岩土爆破. E-mail:wangyanbing@cumtb.edu.cn
引用本文:    
王雁冰,张芳平,李守业,彭会椿,雷振. 三向围压与液氧爆破荷载耦合作用下红砂岩损伤破裂特征研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 58-71.
WANG Yanbing, ZHANG Fangping, LI Shouye, PENG Huichun, LEI Zhen. Research on the damage and fracture characteristics of red sandstone under the coupling effect of triaxial confining pressure and liquid oxygen blasting load. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(3): 58-71.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I3/58
[1] 杨阳, 杨仁树, 陈骏, 等. 岩石爆破基础理论研究进展与展望Ⅰ—本构关系[J]. 工程科学学报, 2024, 46(11): 1931-1947. YANG Yang, YANG Renshu, CHEN Jun, et al. Advancements and future prospects in the fundamental theories of rock blasting research Ⅰ: constitutive relationships[J]. Chinese Journal of Engineering, 2024, 46(11): 1931-1947.
[2] 郭子洋, 唐海, 袁刚, 等. 地应力影响下立井爆破扩掘岩石块度形态[J]. 科学技术与工程, 2024, 24(30): 12909-12919. GUO Ziyang, TANG Hai, YUAN Gang, et al. Rock size shape of vertical shaft blasting excavation under the influence of in situ stress[J]. Science Technology and Engineering, 2024, 24(30): 12909-12919.
[3] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. XIE Heping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305.
[4] 赵国军, 何斌, 黎鸣, 等. 爆破载荷作用下围岩裂隙发展特征试验研究[J]. 科学技术与工程, 2022, 22(4): 1376-1382. ZHAO Guojun, HE Bin, LI Ming, et al. Experimental research on development characteristics of surrounding rock fissures under blasting load[J]. Science Technology and Engineering, 2022, 22(4): 1376-1382.
[5] 吴延梦, 李洪伟, 苏洪, 等. 单向围压下切槽爆破裂纹扩展规律研究[J]. 高压物理学报, 2023, 37(6): 129-139. WU Yanmeng, LI Hongwei, SU Hong, et al. Crack propagation law of notch blasting under unidirectional confining pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 129-139.
[6] 王峥, 郭佳奇, 高锋辉, 等. 单轴压缩条件下软硬互层类岩石的声发射特性与裂纹类型演化[J]. 高压物理学报, 2024, 38(6): 37-51. WANG Zheng, GUO Jiaqi, GAO Fenghui, et al. Acoustic emission characteristics and crack types evolution of soft and hard interbedded rock-like specimens under uniaxial compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 37-51.
[7] 傅师贵, 刘泽功, 张健玉, 等. 高地应力下岩体控制爆破机理与损伤演化特征研究[J]. 采矿与安全工程学报, 2024, 41(4): 867-878. FU Shigui, LIU Zegong, ZHANG Jianyu, et al. Study on mechanism controlled blasting and damage evolution of rock mass under high ground stress[J]. Journal of Mining and Safety Engineering, 2024, 41(4): 867-878.
[8] 许鹏, 杨仁树, 陈程, 等. 岩石爆破基础理论研究进展与展望Ⅲ: 波纹关系[J]. 工程科学学报, 2025, 47(1): 1-12. XU Peng, YANG Renshu, CHEN Cheng, et al. Advancements and future prospects in the fundamental theories of rock blasting research Ⅲ: interaction mechanism between blast waves and cracks[J]. Chinese Journal of Engineering, 2025, 47(1): 1-12.
[9] 杨帅, 刘泽功, 张健玉, 等. 爆炸荷载作用下深部煤体损伤特征试验研究[J]. 振动与冲击, 2024, 43(19):276-286. YANG Shuai, LIU Zegong, ZHANG Jianyu, et al. Test study on damage features of deep coal body under explosive load[J]. Journal of Vibration and Shock, 2024, 43(19): 276-286.
[10] 黄昌满, 王杰, 吕加贺. 不同围压下的椭圆双极线性聚能管聚能爆破数值模拟[J]. 土木工程与管理学报, 2023, 40(3): 131-135. HUANG Changman, WANG Jie, LÜ Jiahe. Numerical simulation of elliptical bipolar linear shaped charge blasting under confining pressure[J]. Journal of Civil Engineering and Management, 2023, 40(3): 131-135.
[11] 黄永辉, 占宇飞, 张洪波, 等. 极高地应力条件下光面爆破围岩损伤规律研究[J]. 振动与冲击, 2025, 44(6): 104-112. HUANG Yonghui, ZHAN Yufei, ZHANG Hongbo, et al. Damage patterns of surrounding rock under high-stress conditions in smooth blasting[J]. Journal of Vibration and Shock, 2025, 44(6): 104-112.
[12] 张鑫, 刘泽功, 常帅, 等. 爆破荷载作用下煤岩本构模型参数特性研究[J]. 振动与冲击, 2025, 44(5): 263-277. ZHANG Xin, LIU Zegong, CHANG Shuai, et al. Parametric characteristics of coal rock constitutive model under blasting load[J]. Journal of Vibration and Shock, 2025, 44(5): 263-277.
[13] MINH N N, CAO P, LIU Z Z. Contour blasting parameters by using a tunnel blast design mode[J].Journal of Central South University, 2021, 28(1):100-111.
[14] LIANG Z Z, QIAN X K, ZHANG Y F, et al. Numerical simulation of dynamic fracture properties of rocks under different static stress conditions[J]. Journal of Central South University, 2022, 29(2): 624-644.
[15] 朱长江. 新型爆破掘进施工方式与常规爆破施工方式的对比[J]. 科技创新与生产力, 2024(8): 137-138. ZHU Changjiang. Comparison of new blasting construction methods and conventional blasting construction methods[J]. Sci-Tech Innovation and Productivity, 2024(8): 137-138.
[16] 张太林, 于世杰, 杨志彬, 等. 液氧致裂爆破技术在露天矿山的应用[J]. 现代矿业, 2024, 40(7): 249-251. ZHANG Tailin, YU Shijie, YANG Zhibin, et al. Application of liquid oxygen cracking blasting technology in an open-pit mine[J]. Modern Mining, 2024, 40(7): 249-251.
[17] 雷振, 王雁冰, 付代睿, 等. 基于液氧储能的岩石破碎技术研究[J]. 爆破, 2025, 42(1):151-158. LEI Zhen, WANG Yanbing, FU Dairui, et al. Research on rock fracturing technology based on liquid oxygen energy storage [J]. Blasting, 2025, 42(1): 151-158.
[18] 李国良. 新型气体膨胀技术在隧洞开挖工程中初步应用分析[J]. 凿岩机械气动工具, 2024, 50(1):53-60. LI Guoliang. Preliminary application analysis of new gas expansion technology in tunnel excavation engineering[J]. Rock Drilling Machinery & Pneumatic Tools, 2024, 50(1):53-60.
[19] 方莹, 李国良, 朱振海, 等. 液氧相变气体膨胀技术在隧洞开挖中的应用研究[J]. 爆破, 2024, 41(2):232-237. FANG Ying, LI Guoliang, ZHU Zhenhai, et al. Application of liquid-oxygen phase change gas expansion technology in tunnel excavation[J]. Blasting, 2024, 41(2): 232-237.
[1] 郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
[2] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[3] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[4] 赵旭明, 雷文君, 蔡明庆, 邰传民, 张林华. 观光隧道烟气流动特性研究[J]. 隧道与地下工程灾害防治, 2025, 7(1): 90-98.
[5] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[6] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[7] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[8] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[9] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[10] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[11] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[12] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[13] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[14] 毛浩宇, 徐奴文, 孙悦鹏, 周相, 丁新潮, 董林鹭. 基于微震能量分形维数的围岩变形预警[J]. 隧道与地下工程灾害防治, 2023, 5(4): 9-20.
[15] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn