Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (4): 53-64    DOI: 10.19952/j.cnki.2096-5052.2025.04.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多层地铁车站水淹过程时空演化特征数值模拟研究
靳高汉1,高成路1*,周宗青1,涂汉臣1,王迪军2,张志良3,袁泉2,李萧翰2
1.山东大学齐鲁交通学院, 山东 济南 250002;2.广州地铁设计研究院股份有限公司, 广东 广州 510010;3.广州地铁集团有限公司, 广东 广州 510330
Numerical study on spatiotemporal evolution characteristics of inundation process in multi-layer subway stations
JIN Gaohan1, GAO Chenglu1*, ZHOU Zongqing1, TU Hanchen1, WANG Dijun2, ZHANG Zhiliang3, YUAN Quan2, LI Xiaohan2
1. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;
2. Guangzhou Metro Design &
Research Institute Co., Ltd., Guangzhou 510010, Guangdong, China;
3. Guangzhou Metro Group Co., Ltd., Guangzhou 510330, Guangdong, China
下载:  PDF (18753KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以广州地铁18号线番禺广场站为对象,构建多层车站结构三维数值模型,模拟极端条件下的车站水淹过程,揭示了积水深度、层间通道流量与通行阻力的时空演化规律,并对比了不同进水条件下的分布差异。研究结果表明,车站水淹过程可划分为通道扩散阶段、平行扩散阶段和稳定上升阶段;站台层水位随时间呈近似线性增长,增长速率与总进水速率密切相关,站厅层水位呈现先增长后趋于稳定的两阶段特征;进水通道入口对水位分布影响显著,站厅层进水通道处水位较高,站台层远离进水通道处水位较高。通过层间通道流量演化分析,发现站台层进水口远端的积水率先接触顶板并回流至站厅层的“远端跃升”现象。通行阻力系数分布显示,站厅层进水通道附近和站台层层间通道出口附近的通行阻力相对较高。研究成果为极端条件下地铁车站水淹灾害的监测预警与疏散应急管理提供了科学参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳高汉
高成路
周宗青
涂汉臣
王迪军
张志良
袁泉
李萧翰
关键词:  地铁车站  突发水淹  数值模拟  时空演化    
Abstract: A three-dimensional numerical model of a multi-story subway station structure was developed,taking the Panyu Square Station on Guangzhou Metro Line 18 as a case study, to simulate the flooding process under extreme conditions. The spatiotemporal evolution of water depth, inter-floor flow rate, and pedestrian walking resistance was analyzed,and the distribution differences under various water ingress conditions were compared. The results showed that the station inundation process could be divided into three distinct stages: channel diffusion, parallel diffusion, and stable ascent. The platform level water level increased in a near-linear manner over time, with its growth rate strongly correlated to the total water ingress rate. In contrast, the station hall water level exhibited a two-stage pattern: initial growth followed by stabilization. The location of water ingress points was found to significantly influence the water level distribution. Higher water levels were observed near the ingress points in the station hall, whereas on the platform level, elevated levels occurred in areas farther from these points. Analysis of inter-floor flow evolution identified a distal surge phenomenon, in which water at the distal end of the platform ingress point rapidly reached the ceiling and flowed back to the station hall. The distribution of the pedestrian walking resistance coefficient indicated that higher resistance occurred both near the water ingress points at the concourse level and near the exits of inter-floor passages at the platform level. The findings of this research provide a scientific reference for monitoring, early warning, and emergency evacuation management during flooding disasters in subway stations under extreme conditions.
Key words:  subway station    sudden flooding    numerical simulation    spatiotemporal evolution
发布日期:  2025-12-29     
中图分类号:  U458  
  TU93  
基金资助: 国家重点研发计划资助项目(2022YFC3005203);国家自然科学基金资助项目(52309135);山东省自然科学基金青年资助项目(ZR2022QE180)
作者简介:  靳高汉(1995— ),男,陕西宝鸡人,博士研究生,主要研究方向为地下工程灾害防控与数值模拟方法. E-mail:18754238519@163.com. *通信作者简介:高成路(1992— ),男,山东济宁人,副研究员,博士,主要研究方向为隧道及地下工程灾害防控. E-mail:chenglugao@163.com
引用本文:    
靳高汉, 高成路, 周宗青, 涂汉臣, 王迪军, 张志良, 袁泉, 李萧翰. 多层地铁车站水淹过程时空演化特征数值模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(4): 53-64.
JIN Gaohan, GAO Chenglu, ZHOU Zongqing, TU Hanchen, WANG Dijun, ZHANG Zhiliang, YUAN Quan, LI Xiaohan. Numerical study on spatiotemporal evolution characteristics of inundation process in multi-layer subway stations. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 53-64.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I4/53
[1] 傅鹤林, 黄震, 王慧, 等. 地铁安全事故分析及安全管理[J]. 隧道与地下工程灾害防治, 2019, 1(2): 59-66. FU Helin, HUANG Zhen, WANG Hui, et al. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 59-66.
[2] 央广网. 2024年12月全国开通运营城市轨道交通线路325条[EB/OL].(2022-01-21)[2025-09-12]. https://news.cnr.cn/kuaixun/20250114/t20250114_527040972.shtml
[3] 国务院灾害调查组. 河南郑州“7·20”特大暴雨灾害调查报告[R/OL].(2022-01-21)[2025-09-12]. https://www.mem.gov.cn/gk/sgcc/tbzdsgdcbg/202201/P02022-0121639049697767.pdf
[4] 黄晓家, 刘书江, 徐之光, 等. 地铁水淹致灾机理分析及水力特性研究进展[J]. 给水排水, 2024, 60(1):143-150. HUANG Xiaojia, LIU Shujiang, XU Zhiguang, et al. The analysis of subway flooding mechanism and progress in the study of hydraulic characteristics of subway flooding[J]. Water & Wastewater Engineering, 2024, 60(1): 143-150.
[5] LI Y L, XU D Y, WANG J H, et al. Simulation of subway flood evacuation based on modified social force model[J]. Tunnelling and Underground Space Technology, 2025, 156: 106244.
[6] JU W Y, WU J, CAO H Z, et al. Flood risk assessment of subway stations based on projection pursuit model optimized by whale algorithm: a case study of Changzhou, China[J]. International Journal of Disaster Risk Reduction, 2023, 98: 104068.
[7] CEA L, GARRIDO M, PUERTAS J. Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas[J]. Journal of Hydrology, 2010, 382(1/2/3/4): 88-102.
[8] DONG W X, HUANG H, ZHONG M H, et al. Experimental study on the inundation characteristics of flooding in a long straight subway tunnel[J]. Tunnelling and Underground Space Technology, 2024, 144: 105566.
[9] LAROCQUE L A, ELKHOLY M, HANIF C M, et al. Experiments on urban flooding caused by a levee breach[J]. Journal of Hydraulic Engineering, 2013, 139(9): 960-973.
[10] TESTA G, ZUCCALÀ D, ALCRUDO F, et al. Flash flood flow experiment in a simplified urban district[J]. Journal of Hydraulic Research, 2007, 45(Suppl.1): 37-44.
[11] JIN G H, GAO C L, ZHOU Z Q, et al. Spatiotemporal evolution characteristics of inundation in multi-level subway stations and inter-station tunnels: a multi-stage quantitative model[J/OL]. Smart Underground Engineering,(2025-09-03)[2025-09-12]. https://doi.org/10.1016/j.sue.2025.08.001
[12] 夏英杰, 孟庆坤, 唐春安, 等. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49. XIA Yingjie, MENG Qingkun, TANG Chun'an, et al. Applications of realistic failure process analysis in tunnel engineering disaster simulation[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 36-49.
[13] 梁立唯, 刘春, 秦岩, 等. 基于MatDEM的盾构滚刀破岩离散元建模与数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 116-122. LIANG Liwei, LIU Chun, QIN Yan, et al. Discrete element modeling and numerical simulation of rock breaking by hob based on MatDEM[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 116-122.
[14] LU J, LIN Z Y, LIN H. Numerical analysis of flood invasion path and mass flow rate in subway stations under heavy rainfall conditions[J]. Applied Sciences, 2024, 14(17): 7497.
[15] 章亚妮, 林晓飞, 唐刚, 等. 地铁车站水侵过程数值模拟研究[J]. 佳木斯大学学报(自然科学版), 2024, 42(7): 97-100. ZHANG Yani, LIN Xiaofei, TANG Gang, et al. Numerical simulation study on water intrusion process in subway station[J]. Journal of Jiamusi University(Natural Science Edition), 2024, 42(7): 97-100.
[16] SHAN S Q, GUO X S, WEI Z Y, et al. Simulation analysis of evacuation processes in a subway station based on multi-disaster coupling scenarios[J]. International Journal of Disaster Risk Reduction, 2023, 96: 103998.
[17] ELHAMAMY W, LI R D, NI G H. Three-dimensional(3D)flood simulation aids informed decision making: a case of a two-story underground parking lot in Beijing[J]. Buildings, 2024, 14(11): 3435.
[18] LIN Z Y, HU S B, ZHOU T Z, et al. Numerical simulation of flood intrusion process under malfunction of flood retaining facilities in complex subway stations[J]. Buildings, 2022, 12(6): 853.
[19] 莫伟丽. 地铁车站水侵过程数值模拟及避灾对策研究[D]. 杭州:浙江大学, 2010: 17-18. MO Weili. Numerical simulation on the flooding in subway station and discussion on its flood prevention measures[D]. Hangzhou: Zhejiang University, 2010: 17-18.
[1] 张小龙, 郭明耀, 向宇. 大断面竖井二次衬砌满堂支架设计及稳定性分析[J]. 隧道与地下工程灾害防治, 2025, 7(4): 124-134.
[2] 王雁冰, 张芳平, 李守业, 彭会椿, 雷振. 三向围压与液氧爆破荷载耦合作用下红砂岩损伤破裂特征研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 58-71.
[3] 王浩赟, 张万志, 张恒, 孙岩峰, 袁铭占. 拱盖法隧道拱脚爆破围岩破坏特征与参数优化[J]. 隧道与地下工程灾害防治, 2025, 7(3): 105-114.
[4] 金阳,姚颖康,刘汶,姬付全,曹昂. 不耦合偏心装药孔壁压力与岩体动态响应特性数值模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 83-92.
[5] 王立川,贺维国,张俊儒,武宏斌,蒋新强,章慧健,王文,黄林祥. 软弱破碎地层地铁车站钢管桩柱拱盖法施工力学特性及其应用[J]. 隧道与地下工程灾害防治, 2025, 7(2): 1-12.
[6] 郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
[7] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[8] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[9] 赵旭明, 雷文君, 蔡明庆, 邰传民, 张林华. 观光隧道烟气流动特性研究[J]. 隧道与地下工程灾害防治, 2025, 7(1): 90-98.
[10] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[11] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[12] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[13] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[14] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[15] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[1] LI Hang. Application of 3D laser scanning for deformation monitoring in large deformation tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 115 -123 .
[2] WANG Sheng, YANG Lingrun, LI Liping, WEI Qin, HU Xuebing. Teat damage prevention technology and development trend of high temperature tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 1 -20 .
[3] WANG Meixia, MA Xiankai, ZHANG Zhiyuan, MA Shijie, WANG Senwei. Study on the influence of clay content and dry density on the triaxial mechanical properties of filling medium[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 33 -42 .
[4] YU Shuisheng, ZHANG Hongsen, SUN Yuzhou, ZHAO Yi, LU Shucan. Numerical experimental study on dynamic pullout of rockbolt grouted structures under confining pressure[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 43 -52 .
[5] ZHU Aihong. Degradation characteristics of pore structure and disturbance state model of gypsum breccia under the combined effect of water erosion and wet-dry[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 65 -75 .
[6] LI Junyan, CHEN Jian, LU Xuefeng, CHEN Xiang. Field experimental study on the blasting vibration law of underground water-sealed oil cavern group[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 76 -85 .
[7] YU Wenduan, WANG Han. Study on the complete transport characteristics of muck in discharge pipe of slurry shields for complex strata[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 86 -95 .
[8] XU Mingze, LIN Nan, GUO Wei, XIE Lifu, GUAN Zhenchang. Intelligent inspector for segment dislocation based on C/S architecture[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 96 -102 .
[9] ZHONG Hao, ZHANG Yongping, CAI Xianqing, YUAN Song, KONG Qingxuan, SUN Hao, GUO Sheng. Intelligent assessment of surrounding rock grade of tunnel face based on multi-scale geological feature enhancement and deep convolutional network[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 103 -114 .
[10] ZHANG Xiaolong, GUO Mingyao, XIANG Yu. Design and stability analysis of full-hall scaffolding for secondary lining in large-section shafts[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 124 -134 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn