Abstract: The blasting characteristics of eccentric charging structures were investigated to achieve full utilization and precise control of explosive energy. The borehole wall pressures and rock dynamic responses during eccentric charge blasting under various uncoupling coefficients were analyzed using ANSYS/LS-DYNA numerical simulation software. Three-dimensional numerical models were established to investigate borehole wall pressures, rock damage, and changes in seismic wave energy flux. Uncoupling coefficients of K=2.0, 1.56, and 1.25 under eccentric charging conditions, along with K=1.0 under concentric charging conditions, were examined. Results showed that under eccentric charge conditions, the difference between peak borehole wall pressures on the coupled and uncoupled sides of the charged section was increased with the uncoupling coefficient. The peak pressure on the coupled side of the borehole wall was measured to be approximately 4 to 11 times greater than that on the uncoupled side. The borehole wall pressures on the coupled and uncoupled sides of the uncharged section located farther from the charged section were observed to remain largely unaffected by the eccentric charging structure. While the pressure difference between the coupled and uncoupled sides at the same location was found to be minimal, the borehole wall pressure was observed to continue decreasing with increasing uncoupling coefficients. The eccentric effect was observed to manifest in the damage zones of both charged and uncharged sections within the eccentric charging structure. The fissure zone volume was measured to be 8 to 15 times greater than that of the crushed zone. A decrease in both the fissure zone volume and the peak seismic wave energy flux was observed with increasing uncoupling coefficients.
金阳,姚颖康,刘汶,姬付全,曹昂. 不耦合偏心装药孔壁压力与岩体动态响应特性数值模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 83-92.
JIN Yang, YAO Yingkang, LIU Wen, JI Fuquan, CAO Ang. Numerical simulation study of borehole wall pressure and rock dynamic response under eccentric uncoupled charge. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(3): 83-92.
[1] GUO Y C, YANG R S, PENG S P, et al. Fractal study on the damage induced by shaped charge blasting with uncoupled eccentric charge[J]. Mechanics of Advanced Materials and Structures, 2024, 31(26): 7788-7800. [2] KIM J G, ALI M A M, KIM J G. Effect of an eccentric decoupled charge on rock mass blasting[J]. Journal of Sustainable Mining, 2020, 19(1):1-10. [3] ZUO J J, YANG R S, GONG M, et al. Explosion wave and crack field of an eccentric decoupled charge[J]. Applied Optics, 2021, 60(33): 10453-10461. [4] 张迅. 光面爆破不耦合装药参数优化的试验研究[J]. 工程爆破, 2019, 25(6): 27-31. ZHANG Xun. Experimental study on parameter optimization of deoupled charge in smooth blasting[J]. Engineering Blasting, 2019, 25(6): 27-31. [5] 马泗洲, 刘科伟, 杨家彩, 等. 不耦合装药下岩石爆破块体尺寸的分布特征[J]. 爆炸与冲击, 2024, 44(4): 122-140. MA Sizhou, LIU Kewei, YANG Jiacai, et al. Characteristics of block size distribution in rock blasting with uncoupled charges[J]. Explosions and Shocks, 2024, 44(4): 122-140. [6] 杨国梁, 邹泽华, 张赫, 等. 径向不耦合装药爆破下页岩的动态应变分布及损伤分形特征[J]. 爆破, 2024, 41(3): 26-32. YANG Guoliang, ZOU Zehua, ZHANG He, et al. Dynamic strain distribution and damage fractal characteristics of shale under radial uncoupled charge blasting[J]. Blasting, 2024, 41(3): 26-32. [7] 范勇, 吴凡, 冷振东, 等. 径向不耦合装药爆压消峰作用及其对岩石破裂范围影响[J]. 兵工学报, 2024, 45(1): 131-143. FAN Yong, WU Fan, LENG Zhendong, et al. The effect of bursting pressure dampening by radially uncoupled charges and its influence on the extent of rock fracture[J]. Journal of Military Science and Industry, 2024, 45(1):131-143. [8] 左进京, 杨仁树, 龚敏, 等. 分段装药爆炸应变场与裂隙场分布规律[J]. 爆炸与冲击, 2023, 43(3): 169-180. ZUO Jinjing, YANG Renshu, GONG Min, et al. On the distribution of explosion strain field and fracture field in segment charge[J]. Explosion and Shock Waves, 2023, 43(3): 169-180. [9] 楼晓明, 武硕, 姚炳金, 等. 径向不耦合装药孔壁冲击压力特性[J]. 金属矿山, 2024(4): 28-36. LOU Xiaoming, WU Shuo, YAO Bingjin, et al. Impact pressure characteristics of radial uncoupled charge on hole wall[J]. Metal Mine, 2024(4): 28-36. [10] 马军, 汪旭光, 李祥龙, 等. 不耦合装药刻痕爆破裂纹的动态力学特征及损伤分形规律实验[J]. 兵工学报, 2023, 44(12): 3676-3686. MA Jun, WANG Xuguang, LI Xianglong, et al. Experiments on dynamic mechanical characteristics and damage fractal law of uncoupled charge indentation blasting cracks[J]. Journal of Military Science and Industry, 2023, 44(12): 3676-3686. [11] PAN C, XIE L X, LI X, et al. Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage[J]. Journal of Central South University, 2022, 29(2): 663-679. [12] 梁瑞, 祁芳霞, 周文海, 等. 不同损伤模型下偏心不耦合装药爆破特性[J]. 长江科学院院报, 2024, 41(9): 98-105. LIANG Rui, QI Fangxia, ZHOU Wenhai, et al. Blast characteristics of eccentric uncoupled charges under different damage models[J]. Journal of the Yangtze River Academy of Sciences, 2024, 41(9): 98-105. [13] ZUO J J, YANG R S, GONG M, et al. Fracture characteristics of iron ore under uncoupled blast loading[J]. International Journal of Mining Science and Technology, 2022, 32(4): 657-667. [14] 成琼, 张延年, 屈林永, 等. 偏心不耦合系数对爆破裂隙影响的数值模拟[J]. 广西大学学报(自然科学版), 2024, 49(2): 259-268. CHENG Qiong, ZHANG Yannian, QU Linyong, et al. Numerical simulation of the effect of eccentric decoupling coefficient on blasting crack[J]. Journal of Guangxi University(Natural Science Edition), 2024, 49(2): 259-268. [15] 李晓静, 张向阳, 张化恳, 等. 偏心不耦合装药爆破损伤分布特征数值模拟[J]. 山东建筑大学学报, 2022, 37(1): 8-15. LI Xiaojing, ZHANG Xiangyang, ZHANG Huaken, et al. Numerical simulation of blasting damage distribution characteristics of eccentric uncoupled charges[J]. Journal of Shandong University of Architecture, 2022, 37(1): 8-15. [16] 丁金画, 纵岗, 王璇, 等. 药卷位置对边坡光面爆破效果影响研究[J]. 中国安全生产科学技术, 2020, 16(5): 102-107. DING Jinhua, ZONG Gang, WANG Xuan, et al. Study on influence of cartridge position on smooth blasting effect of slope[J]. Journal of Safety Science and Technology, 2020, 16(5): 102-107. [17] 傅鹤林, 姜智博, 邱琼. 浅埋暗挖隧道爆破对敏感建筑物的影响及优化[J]. 铁道工程学报, 2023, 40(3): 71-78. FU Helin, JIANG Zhibo, QIU Qiong. Impact of blasting on sensitive buildings and optimization of shallow bored tunnel blasting[J]. Journal of Railway Engineering, 2023, 40(3): 71-78. [18] 叶志伟, 陈明, 李桐, 等. 小不耦合系数装药爆破孔壁压力峰值计算方法[J]. 爆炸与冲击, 2021, 41(6): 119-129. YE Zhiwei, CHEN Ming, LI Tong, et al. A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting[J]. Explosion and Shock Waves, 2021, 41(6): 119-129. [19] WEI X A, LI Q Y, MA C D, et al. Experimental investigations of direct measurement of borehole wall pressure under decoupling charge[J]. Tunnelling and Underground Space Technology, 2022, 120: 104280. [20] 余德运, 刘殿书, 李洪超, 等. 柱状装药炮孔壁初始压力数值模拟及误差分析[J]. 爆破, 2015, 32(4): 26-32. YU Deyun, LIU Dianshu, LI Hongchao, et al. Numerical simulation and error analysis of preliminary shock pressure on borehole wall in columnar blasting[J]. Blasting, 2015, 32(4): 26-32. [21] 白金泽. LS-DYNA3D理论基础与实例分析[M]. 北京: 科学出版社, 2005: 211-213. [22] 张向阳. 偏心不耦合装药结构爆破损伤分布与裂隙扩展特征研究[D]. 济南: 山东建筑大学, 2021. ZHANG Xiangyang. Research on blasting damage distribution and crack propagation characteristics of eccentric decouple charge structure[D]. Jinan: Shandong Jianzhu University, 2021. [23] 王玉杰. 爆破工程[M]. 2版. 武汉: 武汉理工大学出版社, 2018: 189. [24] SANCHIDRIÁN J A, SEGARRA P, LÓPEZ L M. Energy components in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 130-147.