Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
无中导连拱隧道施工力学性态分析
仝跃1,2, 朱子越3, 陈俊武1,张东明3*,张伟1
(1.云南省交通规划设计研究院股份有限公司,云南 昆明 650041;2.云南交投集团投资有限公司,云南 昆明 650228;3.同济大学地下建筑与工程系,上海 200092)
Mechanical behavior analysis of the construction process of a multi-arch tunnel without middle drift
TONG Yue1,2, ZHU Ziyue3, CHEN Junwu1, ZHANG Dongming3*, ZHANG Wei1
(1. Broadvision Engineering Consultants, Kunming 650041, Yunnan, China; 2. Investment Co., Ltd.,of Yunan Communications Investment & Construction Group Co., Ltd., Kunming 650228, Yunnan, China; 3. Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China)
下载:  PDF (4596KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 无中导连拱隧道在复杂地形与不良地质条件下得到广泛应用,但施工阶段结构受力不均及两洞间相互扰动机制仍未完全明确。依托云南宣会高速下寨隧道工程,在现场监测数据验证的基础上,通过数值模拟方法分析不同埋深与不同偏压下的无中导连拱隧道施工全过程力学响应规律。研究结果表明:无中导连拱隧道先行洞右肩、中墙与右侧拱脚为危险区域,后行洞施工对先行洞位移变化影响显著,后行洞上台阶开挖对偏压25°工况下的先行洞拱肩沉降贡献率可达25.9%;先行洞下台阶水平收敛显著高于上台阶,中墙与右侧拱脚为关键应力集中区;埋深增大导致围岩自重应力提升从而增大整体绝对变形,但围岩约束增强使得后行洞施工的相对贡献呈减小趋势;偏压增大时,台阶线两侧位移出现左倾趋势,结构荷载路径出现倾斜,初支与二衬分别在偏压13°与偏压25°工况下最不利。成果表明埋深大于40 m或偏压大于13°时需重点强化中墙与拱脚支护,为复杂地质下无中导连拱隧道稳定性控制提供量化依据与工程参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仝跃
朱子越
陈俊武
张东明
张伟
关键词:  无中导洞  连拱隧道  数值模拟  力学性态  偏压效应    
Abstract: Multi-arch tunnels without middle drift were widely applied in regions with complex terrain and unfavorable geological conditions. However, the mechanisms of structural stress imbalance and mutual disturbance between the two caves during construction remained insufficiently understood. Based on Xiazhai Tunnel Project of Xuanhui Expressway in Yunnan, numerical simulations validated by field monitoring data were employed to analyze the mechanical response throughout the construction process of a multi-arch tunnel without a middle drift under different burial depths and bias pressures. Results indicate that the right shoulder, middle wall and right arch foot of the first tunnel were identified as dangerous areas, and the displacement of the first tunnel was significantly impacted by the construction of the following tunnel. When the bias pressure is 25°, the vertical displacement of the right shoulder of the first tunnel caused by the upper step excavation of the following tunnel reached 25.9%. The horizontal convergence of the lower step line of the first tunnel was found to be significantly higher than that of the upper step line, and the middle wall and the right arch foot were identified as key stress concentration areas. Increasing burial depth was shown to enhance the self-weight stress of surrounding rock and thus increase the absolute deformation of the structure, while the strengthened confinement reduced the relative contribution of disturbance induced by following-tunnel excavation. Under increasing bias angle, the displacement on both sides of the bench line exhibited a left-leaning tendency, and the structural load-transfer path was altered. The initial support and secondary lining were most unfavorable under the 13° and 25° bias conditions, respectively. The results demonstrated that when the buried depth exceeded 40m or the bias was greater than 13°, the support of the middle wall and arch foot should be strengthened. This study provided a quantitative basis and engineering reference for stability control of multi-arch tunnels without a middle drift under complex geological conditions.
Key words:  none-middle drift    multi-arch tunnels    numerical simulation    mechanical behavior    bias effect 
收稿日期:  2025-11-24      修回日期:  2025-12-17      发布日期:  2026-01-22     
中图分类号:  U455  
  U452  
基金资助: 云南交投科技创新计划资助项目(YCIC-YF-2022-08);云南省基础研究计划资助项目(202301AU070098);云南省黄宏伟专家工作站资助项目(202205AF150015)
通讯作者:  张东明(1987—),男,浙江杭州人,教授,博士生导师,博士,主要研究方向为地下工程结构安全风险控制。    E-mail:  09zhang@tongji.edu.cn
作者简介:  仝跃(1992—),男,河北衡水人,高级工程师,博士,主要研究方向为岩石断裂力学分析。E-mail: tongyue2014@yeah.net
引用本文:    
仝跃, 朱子越, 陈俊武, 张东明, 张伟. 无中导连拱隧道施工力学性态分析[J]. 隧道与地下工程灾害防治, .
TONG Yue, ZHU Ziyue, CHEN Junwu, ZHANG Dongming, ZHANG Wei. Mechanical behavior analysis of the construction process of a multi-arch tunnel without middle drift. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-21.
链接本文:  
[1] 靳高汉, 高成路, 周宗青, 涂汉臣, 王迪军, 张志良, 袁泉, 李萧翰. 多层地铁车站水淹过程时空演化特征数值模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(4): 53-64.
[2] 张小龙, 郭明耀, 向宇. 大断面竖井二次衬砌满堂支架设计及稳定性分析[J]. 隧道与地下工程灾害防治, 2025, 7(4): 124-134.
[3] 王雁冰, 张芳平, 李守业, 彭会椿, 雷振. 三向围压与液氧爆破荷载耦合作用下红砂岩损伤破裂特征研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 58-71.
[4] 金阳,姚颖康,刘汶,姬付全,曹昂. 不耦合偏心装药孔壁压力与岩体动态响应特性数值模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 83-92.
[5] 郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
[6] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[7] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[8] 赵旭明, 雷文君, 蔡明庆, 邰传民, 张林华. 观光隧道烟气流动特性研究[J]. 隧道与地下工程灾害防治, 2025, 7(1): 90-98.
[9] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[10] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[11] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[12] 张旭,王红港,王文千. 通透肋式连拱隧道围岩压力计算及敏感性分析[J]. 隧道与地下工程灾害防治, 2024, 6(3): 22-31.
[13] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[14] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[15] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn