Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (3): 83-92    DOI: 10.19952/j.cnki.2096-5052.2025.03.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不耦合偏心装药孔壁压力与岩体动态响应特性数值模拟研究
金阳1,姚颖康1*,刘汶1,姬付全2,曹昂2
1.江汉大学精细爆破全国重点实验室, 湖北 武汉 430056;2.中交第二航务工程局有限公司, 湖北 武汉 430040
Numerical simulation study of borehole wall pressure and rock dynamic response under eccentric uncoupled charge
JIN Yang1, YAO Yingkang1*, LIU Wen1, JI Fuquan2, CAO Ang2
1. State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, Hubei, China;
2. CCCC Second Harbour Engineering Co., Ltd., Wuhan 430040, Hubei, China
下载:  PDF (9805KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究偏心装药结构的爆破特性,使炸药的能量得到充分利用和精确释放,本研究运用ANSYS/LS-DYNA数值模拟软件,研究多种不耦合系数下偏心装药结构爆破的孔壁压力和岩体动态响应。通过建立三维数值模拟模型,研究偏心装药工况下不耦合系数K=2.0、1.56、1.25以及同心装药工况下K=1.0的孔壁压力、岩体损伤情况以及爆炸地震波能量通量变化情况。结果表明:偏心装药工况下,装药段耦合侧与不耦合侧的孔壁峰值压力随不耦合系数增大相差越大,耦合侧的孔壁峰值压力为不耦合侧的4~11倍;距离装药段较远处的非装药段耦合侧和不耦合侧孔壁压力几乎不受偏心装药结构的影响,同一位置处耦合侧与不耦合侧孔壁压力数值相差较小,但孔壁压力仍随不耦合系数的增大而减小;偏心装药结构装药段和非装药段的损伤区域都出现了“偏心效应”,裂隙区体积是粉碎区体积的8~15倍,裂隙区体积和地震波能量通量的峰值都随不耦合系数的增大而减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金阳
姚颖康
刘汶
姬付全
曹昂
关键词:  不耦合系数  偏心装药结构  孔壁压力  非装药段  数值模拟    
Abstract: The blasting characteristics of eccentric charging structures were investigated to achieve full utilization and precise control of explosive energy. The borehole wall pressures and rock dynamic responses during eccentric charge blasting under various uncoupling coefficients were analyzed using ANSYS/LS-DYNA numerical simulation software. Three-dimensional numerical models were established to investigate borehole wall pressures, rock damage, and changes in seismic wave energy flux. Uncoupling coefficients of K=2.0, 1.56, and 1.25 under eccentric charging conditions, along with K=1.0 under concentric charging conditions, were examined. Results showed that under eccentric charge conditions, the difference between peak borehole wall pressures on the coupled and uncoupled sides of the charged section was increased with the uncoupling coefficient. The peak pressure on the coupled side of the borehole wall was measured to be approximately 4 to 11 times greater than that on the uncoupled side. The borehole wall pressures on the coupled and uncoupled sides of the uncharged section located farther from the charged section were observed to remain largely unaffected by the eccentric charging structure. While the pressure difference between the coupled and uncoupled sides at the same location was found to be minimal, the borehole wall pressure was observed to continue decreasing with increasing uncoupling coefficients. The eccentric effect was observed to manifest in the damage zones of both charged and uncharged sections within the eccentric charging structure. The fissure zone volume was measured to be 8 to 15 times greater than that of the crushed zone. A decrease in both the fissure zone volume and the peak seismic wave energy flux was observed with increasing uncoupling coefficients.
Key words:  uncoupling coefficient    eccentric charging structure    borehole wall pressure    non-charged section    numerical simulationReceived:2025-01-10    Revised:2025-03-30    Accepted:2025-03-30    Published:2025-09-20
发布日期:  2025-09-19     
中图分类号:  U455  
基金资助: 湖北省“智能建造”青年科技人才联合资助项目(2024DJC006);湖北省中央引导地方科技发展专项资助项目(2024CSA094)
作者简介:  金阳(2000— ),男,湖南醴陵人,硕士研究生,主要研究方向为爆破技术及应用. E-mail:jy17373312147@163.com. *通信作者简介:姚颖康(1981— ),男,山西运城人,教授,博士生导师,博士,主要研究方向为建筑物精细爆破拆除和土木工程防灾减灾. E-mail:shanxiyao@jhun.edu.cn
引用本文:    
金阳,姚颖康,刘汶,姬付全,曹昂. 不耦合偏心装药孔壁压力与岩体动态响应特性数值模拟研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 83-92.
JIN Yang, YAO Yingkang, LIU Wen, JI Fuquan, CAO Ang. Numerical simulation study of borehole wall pressure and rock dynamic response under eccentric uncoupled charge. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(3): 83-92.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I3/83
[1] GUO Y C, YANG R S, PENG S P, et al. Fractal study on the damage induced by shaped charge blasting with uncoupled eccentric charge[J]. Mechanics of Advanced Materials and Structures, 2024, 31(26): 7788-7800.
[2] KIM J G, ALI M A M, KIM J G. Effect of an eccentric decoupled charge on rock mass blasting[J]. Journal of Sustainable Mining, 2020, 19(1):1-10.
[3] ZUO J J, YANG R S, GONG M, et al. Explosion wave and crack field of an eccentric decoupled charge[J]. Applied Optics, 2021, 60(33): 10453-10461.
[4] 张迅. 光面爆破不耦合装药参数优化的试验研究[J]. 工程爆破, 2019, 25(6): 27-31. ZHANG Xun. Experimental study on parameter optimization of deoupled charge in smooth blasting[J]. Engineering Blasting, 2019, 25(6): 27-31.
[5] 马泗洲, 刘科伟, 杨家彩, 等. 不耦合装药下岩石爆破块体尺寸的分布特征[J]. 爆炸与冲击, 2024, 44(4): 122-140. MA Sizhou, LIU Kewei, YANG Jiacai, et al. Characteristics of block size distribution in rock blasting with uncoupled charges[J]. Explosions and Shocks, 2024, 44(4): 122-140.
[6] 杨国梁, 邹泽华, 张赫, 等. 径向不耦合装药爆破下页岩的动态应变分布及损伤分形特征[J]. 爆破, 2024, 41(3): 26-32. YANG Guoliang, ZOU Zehua, ZHANG He, et al. Dynamic strain distribution and damage fractal characteristics of shale under radial uncoupled charge blasting[J]. Blasting, 2024, 41(3): 26-32.
[7] 范勇, 吴凡, 冷振东, 等. 径向不耦合装药爆压消峰作用及其对岩石破裂范围影响[J]. 兵工学报, 2024, 45(1): 131-143. FAN Yong, WU Fan, LENG Zhendong, et al. The effect of bursting pressure dampening by radially uncoupled charges and its influence on the extent of rock fracture[J]. Journal of Military Science and Industry, 2024, 45(1):131-143.
[8] 左进京, 杨仁树, 龚敏, 等. 分段装药爆炸应变场与裂隙场分布规律[J]. 爆炸与冲击, 2023, 43(3): 169-180. ZUO Jinjing, YANG Renshu, GONG Min, et al. On the distribution of explosion strain field and fracture field in segment charge[J]. Explosion and Shock Waves, 2023, 43(3): 169-180.
[9] 楼晓明, 武硕, 姚炳金, 等. 径向不耦合装药孔壁冲击压力特性[J]. 金属矿山, 2024(4): 28-36. LOU Xiaoming, WU Shuo, YAO Bingjin, et al. Impact pressure characteristics of radial uncoupled charge on hole wall[J]. Metal Mine, 2024(4): 28-36.
[10] 马军, 汪旭光, 李祥龙, 等. 不耦合装药刻痕爆破裂纹的动态力学特征及损伤分形规律实验[J]. 兵工学报, 2023, 44(12): 3676-3686. MA Jun, WANG Xuguang, LI Xianglong, et al. Experiments on dynamic mechanical characteristics and damage fractal law of uncoupled charge indentation blasting cracks[J]. Journal of Military Science and Industry, 2023, 44(12): 3676-3686.
[11] PAN C, XIE L X, LI X, et al. Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage[J]. Journal of Central South University, 2022, 29(2): 663-679.
[12] 梁瑞, 祁芳霞, 周文海, 等. 不同损伤模型下偏心不耦合装药爆破特性[J]. 长江科学院院报, 2024, 41(9): 98-105. LIANG Rui, QI Fangxia, ZHOU Wenhai, et al. Blast characteristics of eccentric uncoupled charges under different damage models[J]. Journal of the Yangtze River Academy of Sciences, 2024, 41(9): 98-105.
[13] ZUO J J, YANG R S, GONG M, et al. Fracture characteristics of iron ore under uncoupled blast loading[J]. International Journal of Mining Science and Technology, 2022, 32(4): 657-667.
[14] 成琼, 张延年, 屈林永, 等. 偏心不耦合系数对爆破裂隙影响的数值模拟[J]. 广西大学学报(自然科学版), 2024, 49(2): 259-268. CHENG Qiong, ZHANG Yannian, QU Linyong, et al. Numerical simulation of the effect of eccentric decoupling coefficient on blasting crack[J]. Journal of Guangxi University(Natural Science Edition), 2024, 49(2): 259-268.
[15] 李晓静, 张向阳, 张化恳, 等. 偏心不耦合装药爆破损伤分布特征数值模拟[J]. 山东建筑大学学报, 2022, 37(1): 8-15. LI Xiaojing, ZHANG Xiangyang, ZHANG Huaken, et al. Numerical simulation of blasting damage distribution characteristics of eccentric uncoupled charges[J]. Journal of Shandong University of Architecture, 2022, 37(1): 8-15.
[16] 丁金画, 纵岗, 王璇, 等. 药卷位置对边坡光面爆破效果影响研究[J]. 中国安全生产科学技术, 2020, 16(5): 102-107. DING Jinhua, ZONG Gang, WANG Xuan, et al. Study on influence of cartridge position on smooth blasting effect of slope[J]. Journal of Safety Science and Technology, 2020, 16(5): 102-107.
[17] 傅鹤林, 姜智博, 邱琼. 浅埋暗挖隧道爆破对敏感建筑物的影响及优化[J]. 铁道工程学报, 2023, 40(3): 71-78. FU Helin, JIANG Zhibo, QIU Qiong. Impact of blasting on sensitive buildings and optimization of shallow bored tunnel blasting[J]. Journal of Railway Engineering, 2023, 40(3): 71-78.
[18] 叶志伟, 陈明, 李桐, 等. 小不耦合系数装药爆破孔壁压力峰值计算方法[J]. 爆炸与冲击, 2021, 41(6): 119-129. YE Zhiwei, CHEN Ming, LI Tong, et al. A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting[J]. Explosion and Shock Waves, 2021, 41(6): 119-129.
[19] WEI X A, LI Q Y, MA C D, et al. Experimental investigations of direct measurement of borehole wall pressure under decoupling charge[J]. Tunnelling and Underground Space Technology, 2022, 120: 104280.
[20] 余德运, 刘殿书, 李洪超, 等. 柱状装药炮孔壁初始压力数值模拟及误差分析[J]. 爆破, 2015, 32(4): 26-32. YU Deyun, LIU Dianshu, LI Hongchao, et al. Numerical simulation and error analysis of preliminary shock pressure on borehole wall in columnar blasting[J]. Blasting, 2015, 32(4): 26-32.
[21] 白金泽. LS-DYNA3D理论基础与实例分析[M]. 北京: 科学出版社, 2005: 211-213.
[22] 张向阳. 偏心不耦合装药结构爆破损伤分布与裂隙扩展特征研究[D]. 济南: 山东建筑大学, 2021. ZHANG Xiangyang. Research on blasting damage distribution and crack propagation characteristics of eccentric decouple charge structure[D]. Jinan: Shandong Jianzhu University, 2021.
[23] 王玉杰. 爆破工程[M]. 2版. 武汉: 武汉理工大学出版社, 2018: 189.
[24] SANCHIDRIÁN J A, SEGARRA P, LÓPEZ L M. Energy components in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 130-147.
[1] 王雁冰,张芳平,李守业,彭会椿,雷振. 三向围压与液氧爆破荷载耦合作用下红砂岩损伤破裂特征研究[J]. 隧道与地下工程灾害防治, 2025, 7(3): 58-71.
[2] 郭建光,王星,董唱唱,薛永斌,王双庆,赵宏硕,王涵,王文虎. 浆液时效性与管片摩擦作用下管片上浮研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 73-80.
[3] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[4] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[5] 赵旭明, 雷文君, 蔡明庆, 邰传民, 张林华. 观光隧道烟气流动特性研究[J]. 隧道与地下工程灾害防治, 2025, 7(1): 90-98.
[6] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[7] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[8] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[9] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[10] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[11] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[12] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[13] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[14] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[15] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn