Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (2): 64-72    DOI: 10.19952/j.cnki.2096-5052.2025.02.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚氨酯基体与细骨料组成的隧道隔震材料的力学性能试验研究
王少锋,曹翔鹏
中铁第四勘察设计院集团有限公司, 湖北 武汉 430063
Experimental study on mechanical properties of tunnel isolation material composed of polyurethane matrix and fine aggregate
WANG Shaofeng, CAO Xiangpeng
China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China
下载:  PDF (12144KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究聚氨酯基体与水泥砂组成的复合材料(polyurethane cement mortar, PCM)的力学性能,通过试验方法研究了PCM的压缩强度、拉伸强度、弹性模量和滞回特性等力学性能。研究结果表明,聚灰比为1∶2,水泥质量分数为40%的PCM具有较高的压缩强度、拉伸强度和弹性模量,但其断裂伸长率有所降低。同时,为了验证其弹性恢复性能,将其置于0.55应变幅值下加卸载和再加载。试验结果显示,PCM表现出良好的滞回特性。最后,结合微观测试分析了PCM破坏机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王少锋
曹翔鹏
关键词:  聚氨酯基体  水泥砂浆  隧道  隔震材料  力学性能试验    
Abstract: To investigate the mechanical properties of polyurethane cement mortar(PCM), a series of tests were conducted to evaluate its compressive strength, tensile strength, elastic modulus, and hysteresis characteristics. The results demonstrated that PCM with a polyurethane-to-cement ratio of 1∶2 and a cement content of 40% exhibited higher compressive strength, tensile strength, and elastic modulus, along with a reduction in elongation at break. Meanwhile, in order to verify its elastic recovery performance, the material was subjected to loading, unloading, and reloading at a strain amplitude of 0.55. The experimental results revealed that PCM displayed favorable hysteresis characteristics. Finally, the failure mechanism of PCM was examined through microscopic analysis.
Key words:  polyurethane matrix    cement mortar    tunnel    isolation material    mechanical property testReceived:2025-02-21    Revised:2025-05-19    Accepted:2025-05-21    Published:2025-06-20
发布日期:  2025-06-18     
中图分类号:  U455.4  
作者简介:  王少锋(1990— ),男,湖北武穴人,高级工程师,硕士,主要研究方向为隧道与地下工程的设计与研究. E-mail:006370@crfsdi.com
引用本文:    
王少锋,曹翔鹏. 聚氨酯基体与细骨料组成的隧道隔震材料的力学性能试验研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 64-72.
WANG Shaofeng, CAO Xiangpeng. Experimental study on mechanical properties of tunnel isolation material composed of polyurethane matrix and fine aggregate. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(2): 64-72.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I2/64
[1] SHIMAMURA S, KASAI H, HARUUMI M. Seismic isolation effect for a tunnel with a soft isolation layer[J]. Structural Engineering Earthquake Engineering, 1999, 16(2): 143s-154s.
[2] KIM D S, KONAGAI K. Seismic isolation effect of a tunnel covered with coating material[J].Tunnelling and Underground Space Technology, 2000, 15(4): 437-443.
[3] KIM D S, KONAGAI K. Key parameters governing the performance of soft tunnel coating for seismic isolation[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(9): 1333-1343.
[4] KONAGAI K, KIM D S. Simple evaluation of the effect of seismic isolation by covering a tunnel with a thin flexible material[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(4): 287-295.
[5] YAMADA T, NAGATANI H, OHBO N, et al. Seismic performance of flat cross-sectional tunnel with countermeasures[C] //Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada: [s.n.] , 2004: 706.
[6] KIRYU S, MURONO Y, MORIKAWA H. Seismic response of a cut-and-cover tunnel isolated by polymer material[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2043-2057.
[7] 赵武胜, 陈卫忠, 谭贤君, 等. 高性能泡沫混凝土隧道隔震材料研究[J]. 岩土工程学报, 2013, 35(8): 1544-1552. ZHAO Wusheng, CHEN Weizhong, TAN Xianjun, et al. High-performance foam concrete for seismic-isolation materials of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1544-1552.
[8] 赵武胜, 陈卫忠, 马少森, 等. 泡沫混凝土隧道减震层减震机制[J]. 岩土力学, 2018, 39(3): 1027-1036. ZHAO Wusheng, CHEN Weizhong, MA Shaosen, et al. Isolation effect of foamed concrete layer on the seismic responses of tunnel[J]. Rock and Soil Mechanics, 2018, 39(3): 1027-1036.
[9] MA S S, CHEN W Z, ZHAO W S. Mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 159-171.
[10] XU H, LI T B, XIA L, et al. Shaking table tests on seismic measures of a model mountain tunnel[J]. Tunnelling and Underground Space Technology, 2016, 60: 197-209.
[11] CHEN Z Y, LIANG S B, SHEN H, et al. Dynamic centrifuge tests on effects of isolation layer and cross-section dimensions on shield tunnels[J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 173-187.
[12] ROY N, BHARTI S D, KUMAR A. Seismic isolation of tunnels in blocky rock mass using expanded polystyrene(EPS)geofoam[J]. Innovative Infrastructure Solutions, 2019, 4(1): 38.
[13] LI T B. Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(2): 297-308.
[14] 王亚波, 刘汉婷, 豆高锋, 等. 钢纤维泡沫混凝土复合楼板试验研究[J]. 吉林建筑大学学报, 2018, 35(1): 1-7. WANG Yabo, LIU Hanting, DOU Gaofeng, et al. Experiment investigation on composite slab of steel fiber foam concrete[J]. Journal of Jilin Jianzhu University, 2018, 35(1): 1-7.
[15] 高文荣. 泡沫混凝土性能受纤维和外加剂的影响研究[J]. 上海公路, 2024(1): 115-118. GAO Wenrong. Study on the influence of fiber and admixture on the performance of foam concrete[J]. Shanghai Highways, 2024(1): 115-118.
[16] 周宏元, 李秀杰, 王小娟, 等. 玄武岩纤维泡沫混凝土的高温性能及细观结构研究[J]. 混凝土, 2024(6): 126-133. ZHOU Hongyuan, LI Xiujie, WANG Xiaojuan, et al. High temperature performance and microstructure of basalt fiber reinforced foam concrete[J]. Concrete, 2024(6): 126-133.
[17] 何善能, 黄湘寒. 聚丙烯纤维泡沫混凝土掺比优化试验及性能评价[J]. 粘接, 2024, 51(9): 68-71. HE Shanneng, HUANG Xianghan. Optimization test and performance evaluation of polypropylene fiber foam concrete[J]. Adhesion, 2024, 51(9): 68-71.
[18] 王述红, 贡藩, 尹宏, 等. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 109-116. WANG Shuhong, GONG Fan, YIN Hong, et al. Study on mechanical properties and pore structure of foamed concrete reinforced with polyester fiber[J]. Materials Reports, 2024, 38(1): 109-116.
[19] YEGANEH H, SHAMEKHI M A. Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability[J]. Polymer, 2004, 45(2): 359-365.
[20] FOKS J, JANIK H, RUSSO R, et al. Morphology and thermal properties of polyurethanes prepared under different conditions[J]. European Polymer Journal, 1989, 25(1): 31-37.
[21] 国家市场监督管理总局, 国家标准化管理委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2020[S]. 北京: 中国标准出版社, 2020.
[1] 沈翔,张海彬,段锴,曾庆成,黄书华. 多滚刀切削混凝土桩基相互作用特性及扰动影响研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 21-30.
[2] 雷文君,郭丽丽,赵旭明,邰传民,齐悦. 补风方式对地铁隧道火灾烟气控制效果的研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 31-41.
[3] 王东伟, 贺维国, 戴新, 田峰, 陈洋. 深埋组合工法海底铁路隧道救援疏散及通风技术探讨[J]. 隧道与地下工程灾害防治, 2025, 7(1): 1-10.
[4] 王浩. 超大跨度隧道预应力锚杆与锚索组合支护设计方法[J]. 隧道与地下工程灾害防治, 2025, 7(1): 83-89.
[5] 丁建奇, 王陈成, 朱向闪, 张翔, 傅刚, 徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 2025, 7(1): 22-34.
[6] 李璋, 白森, 郑建国, 于永堂, 朱才辉. 基坑开挖对西安黄土地层中既有盾构隧道围岩压力及变形影响分析[J]. 隧道与地下工程灾害防治, 2025, 7(1): 35-47.
[7] 苟晓军, 赵金泉, 季玮, 花晓鸣, 范占锋. 隧道不良地质构造雷达特征数值模拟[J]. 隧道与地下工程灾害防治, 2025, 7(1): 68-82.
[8] 赵旭明, 雷文君, 蔡明庆, 邰传民, 张林华. 观光隧道烟气流动特性研究[J]. 隧道与地下工程灾害防治, 2025, 7(1): 90-98.
[9] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[10] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[11] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[12] 孙超, 张光伟, 答武强, 余祖峰. 临山条件下大直径盾构隧道抗浮控制技术[J]. 隧道与地下工程灾害防治, 2024, 6(4): 27-37.
[13] 刘力英, 欧振锋, 杨春山, 段尚磊. 沉管基槽开挖诱发临岸结构变形数值模拟与实测分析[J]. 隧道与地下工程灾害防治, 2024, 6(4): 12-19.
[14] 张旭,王红港,王文千. 通透肋式连拱隧道围岩压力计算及敏感性分析[J]. 隧道与地下工程灾害防治, 2024, 6(3): 22-31.
[15] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn