Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (1): 35-47    DOI: 10.19952/j.cnki.2096-5052.2025.01.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基坑开挖对西安黄土地层中既有盾构隧道围岩压力及变形影响分析
李璋1,白森1,郑建国2,3,于永堂2,4,朱才辉5*
1.中铁城市发展投资集团有限公司, 四川 成都 610218;2.西安建筑科技大学土木工程学院, 陕西 西安 710055;3.机械工业勘察设计研究院有限公司, 陕西 西安 710043;4.中联西北工程设计研究院有限公司, 陕西 西安 710077;5.西安理工大学岩土工程研究所, 陕西 西安 710048
The influence of foundation pit excavation on the surrounding soil pressure and deformation of existing shield tunnel in Xi'an loess stratum
LI Zhang1, BAI Sen1, ZHENG Jianguo2,3, YU Yongtang2,4, ZHU Caihui5*
1. China Railway Urban Development and Investment Group Co., Ltd., Chengdu 610218, Sichuan, China;
2. College of civil engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China;
3. China Mechanical Industry Survey and Design Research Institute Co., Ltd., Xi'an 710043, Shaanxi, China;
4. China United Northwest Engineering Design and Research Institute Co., Ltd., Xi'an 710077, Shaanxi, China;
5. Geotechnical Engineering Institute, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
下载:  PDF (8287KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提升地铁隧道运营安全、给临近基坑规划提供设计依据,以西安湿陷性黄土地层中的9号线为背景,应用相似模型试验的方法,研究不同空间位置处基坑开挖卸荷作用下既有地铁管片的变形特征及围岩压力分布规律,分析基坑与隧道的水平净间距、基坑宽度、基坑深度下隧道收敛位移的影响分区和修正的围岩压力计算公式。研究表明:旁侧基坑开挖前,盾构隧道围岩压力始终呈葫芦型对称分布,盾构隧道顶部及底部土压力较大,腰部土压力较小;旁侧基坑开挖后,隧道两侧的围岩压力减小,基坑开挖侧的围岩压力减小量更多,且随着基坑宽度、深度的增大和水平净间距的减小,隧道的附加围岩压力的绝对值均会增大,变形模式为横向扩张、竖向收缩分布;正上方基坑开挖后,隧道整体的围岩压力明显减小,但仍呈对称分布,随着基坑宽度及深度的增加,隧道的变形模式为横向和竖向收敛均呈减小的趋势并逐渐趋于零,随后转变为横向收缩、竖向扩张的变形模式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李璋
白森
郑建国
于永堂
朱才辉
关键词:  盾构隧道  基坑开挖  力学响应  模型试验  3D打印    
Abstract: In order to improve the safety of subway tunnel operation and provide a design basis for the planning of adjacent foundation pits, the deformation characteristics of existing subway segments and the surrounding soil pressure distribution under excavation unloading at different spatial locations were studied using a similar model test method based on Line 9 in the collapsible loess stratum in Xi'an. The influence zones of tunnel convergence displacement under the horizontal net distance between the foundation pit and the tunnel, the width, and the depth of the foundation pit were analyzed, and a modified formula of surrounding soil pressure was proposed. The results showed that the surrounding soil pressure of the shield tunnel exhibited a gourd-shaped symmetrical distribution before the excavation of the side foundation pit, with higher earth pressure at the top and bottom of the shield tunnel and lower pressure at the waist. After the excavation of the side foundation pit, the surrounding soil pressure on both sides of the tunnel decreased, with a more pronounced reduction on the excavation side. As the width and depth of the foundation pit increased and the horizontal net distance decreased, the absolute value of the additional surrounding soil pressure increased, and the deformation mode shifted to "lateral expansion and vertical contraction". After the excavation of the foundation pit directly above the tunnel, the overall surrounding soil pressure decreased significantly but retained a symmetrical distribution. With increasing width and depth of the foundation pit, the horizontal and vertical convergence deformation of the tunnel gradually diminished, approaching zero before transitioning to a "lateral contraction and vertical expansion" mode.
Key words:  shield tunnel    foundation pit excavation    mechanical response    model test    3D printingReceived: 2025-01-04    Revised: 2025-01-20    Accepted: 2025-01-30    Publised: 2025-03-20
发布日期:  2025-03-28     
中图分类号:  TU443  
基金资助: 国家自然科学基金资助项目(52279110);中国科学院大学生创新实践训练计划资助项目(Y110061Q01)
作者简介:  李璋(1980— ),男,陕西西安人,高级工程师,主要研究方向为城市轨道项目建设管理. E-mail:30668815@qq.com. *通信作者简介:朱才辉(1983— ),男,陕西商洛人,教授,博士生导师,博士,主要研究方向为黄土力学与工程、地下洞室稳定性分析. E-mail:zhucaihui123@163.com
引用本文:    
李璋,白森,郑建国,于永堂,朱才辉. 基坑开挖对西安黄土地层中既有盾构隧道围岩压力及变形影响分析[J]. 隧道与地下工程灾害防治, 2025, 7(1): 35-47.
LI Zhang, BAI Sen, ZHENG Jianguo, YU Yongtang, ZHU Caihui. The influence of foundation pit excavation on the surrounding soil pressure and deformation of existing shield tunnel in Xi'an loess stratum. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 35-47.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I1/35
[1] 郑刚, 杜一鸣, 刁钰, 等. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 2016, 38(4): 599-612. ZHENG Gang, DU Yiming, DIAO Yu, et al. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612.
[2] 刘波. 软弱地层中基坑开挖卸荷引起临近既有地铁盾构隧道变形及控制方法研究[D]. 南京: 东南大学, 2020. LIU Bo. Deformation and its control of existing shield tunnel induced by unloading of adjacent foundation pit excavation in weak stratum[D]. Nanjing: Southeast University, 2020.
[3] FANG Y G, JIA J, XIE X L. Responses of metro shield tunnels to an adjacent deep excavation in Shanghai soft ground[J]. IOP Conference Series:Earth and Environmental Science, 2024, 1336(1): 012025.
[4] 张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation[J]. Rock and Soil Mechanics, 2011, 32(7):2085-2092.
[5] 魏纲, 赵城丽. 基坑开挖引起邻近既有地铁隧道位移计算的研究[J]. 现代隧道技术, 2018, 55(1): 124-132. WEI Gang, ZHAO Chengli. On calculation formula of existing metro tunnel displacements induced by adjacent foundation pit excavation[J]. Modern Tunnelling Technology, 2018, 55(1): 124-132.
[6] FRANZA A, DEJONG M J. Elastoplastic solutions to predict tunneling-induced load redistribution and deformation of surface structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(4):04019007.
[7] MENG F, QIAO S F. Study on the deformation of existing tunnel under the combined effect of pit excavation and dewatering based on the Kerr foundation model[J]. Tunnelling and Underground Space Technology, 2025, 158:106382.
[8] 李志高, 刘浩, 刘国彬, 等. 基坑开挖引起下卧隧道位移的实测分析[J]. 地下空间与工程学报, 2005, 1(4): 619-623. LI Zhigao,LIU Hao,LIU Guobin, et al. Influence analysis of deep-dip excavation on down tunnel based on the measured displacement[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(4): 619-623.
[9] 王立峰, 庞晋, 徐云福, 等. 基坑开挖对近邻运营地铁隧道影响规律研究[J]. 岩土力学, 2016, 37(7): 2004-2010. WANG Lifeng, PANG Jin, XU Yunfu, et al. Influence of foundation pit excavation on adjacent metro tunnels[J]. Rock and Soil Mechanics, 2016, 37(7): 2004-2010.
[10] 郭鹏飞, 杨龙才, 周顺华, 等. 基坑开挖引起下卧隧道隆起变形的实测数据分析[J]. 岩土力学, 2016, 37(增刊2): 613-621. GUO Pengfei, YANG Longcai, ZHOU Shunhua, et al. Measurement data analyses of heave deformation of shield tunnels due to overlying pit excavation[J]. Rock and Soil Mechanics, 2016, 37(Suppl.2): 613-621.
[11] 梁发云, 褚峰, 宋著, 等. 紧邻地铁枢纽深基坑变形特性离心模型试验研究[J]. 岩土力学, 2012, 33(3): 657-664. LIANG Fayun, CHU Feng, SONG Zhu, et al. Centrifugal model test research on deformation behaviors of deep foundation pit adjacent to metro stations[J]. Rock and Soil Mechanics, 2012, 33(3): 657-664.
[12] 郭海峰. 邻域基坑开挖卸荷对既有隧道位移影响规律研究[J]. 四川水泥, 2021(6):164-165.
[13] 姚爱军, 张剑涛, 郭海峰, 等. 地铁盾构隧道上方基坑开挖卸荷-加载影响研究[J]. 岩土力学, 2018, 39(7): 2318-2326. YAO Aijun, ZHANG Jiantao, GUO Haifeng, et al. Influence of unloading-loading of foundation on shield tunnel underneath[J]. Rock and Soil Mechanics, 2018, 39(7): 2318-2326.
[14] 魏纲, 张书鸣, 余剑英, 等. 地面堆载对盾构隧道围压影响的模型试验与理论分析[J]. 岩土工程学报, 2022, 44(10):1789-1798. WEI Gang, ZHANG Shuming, YU Jianying, et al. Model tests and theoretical analyses of influences of surface surcharge on confining pressure of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1789-1798.
[15] 黄大维, 周顺华, 王秀志, 等. 模型盾构隧道管片纵缝接头设计方法[J]. 岩土工程学报, 2015, 37(6): 1068-1076. HUANG Dawei, ZHOU Shunhua, WANG Xiuzhi, et al. Design method for longitudinal segment joints of shield tunnel model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6):1068-1076.
[16] 梁荣柱, 曹世安, 向黎明, 等. 地表堆载作用下盾构隧道纵向受力机制试验研究[J]. 岩石力学与工程学报, 2023, 42(3):736-747. LIANG Rongzhu, CAO Shian, XIANG Liming, et al. Experimental investigation on longitudinal mechanical mechanism of shield tunnels subjected to ground surface surcharge[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3):736-747.
[17] 张玉伟, 宋战平, 翁效林, 等. 黄土地铁隧道湿陷性基底地基处治优化模型试验[J]. 岩石力学与工程学报, 2020, 39(9):1912-1920. ZHANG Yuwei, SONG Zhanping, WENG Xiaolin, et al. Model test on treatment of collapsible loess foundation of metro tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9):1912-1920.
[18] 张玉伟. 黄土地层浸水对地铁隧道结构受力性状的影响研究[D]. 西安: 长安大学, 2017. ZHANG Yuwei. Study on mechanical characteristics of metro tunnel based on soaking of loess layer [D]. Xi'an: Chang'an University, 2017.
[19] 高常辉, 刘松玉, 杜广印, 等. 气动振杆密实法加固湿陷性黄土的模型试验研究[J]. 岩土工程学报, 2024, 46(2): 325-334. GAO Changhui, LIU Songyu, DU Guangyin, et al. Model tests on reinforcement of collapsible loess by pneumatic-vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 325-334.
[20] 高常辉. 气动振杆密实法加固湿陷性黄土地基机理与设计方法研究[D]. 南京: 东南大学, 2022. GAO Changhui. Study on reinforcement mechanism and design method of pneumatic-vibratory probe compaction method treated collapsible loess foundation [D]. Nanjing: Southeast University, 2022.
[21] PRASAD S K, TOWHATA I. Shaking table tests in earth quake geotechnical engineering[J]. Current Science, 2004, 87(10): 1398-1404.
[22] 宋林, 闫玉湛, 韩八晓, 等. 非线性变形节理中纵波传播特性的理论研究[J]. 应用力学学报, 2012, 29(2): 133-140. SONG Lin, YAN Yuzhan, HAN Baxiao, et al. Theoretical research into the wave propagation of P-wave across rock joint with nonlinear deformation[J]. Chinese Journal of Applied Mechanics, 2012, 29(2): 133-140.
[23] 姜兆华. 基坑开挖时邻近既有隧道的力学响应规律研究[D]. 重庆: 重庆大学, 2013. JIANG Zhaohua. Study of mechanical response on adjacent tunnel in processes of foundation excavation[D]. Chongqing: Chongqing University, 2013.
[24] 胡欣. 模型试验模拟不同工况下基坑开挖对既有隧道的影响[J]. 路基工程, 2015(6): 151-155. HU Xin. Influence of foundation pit excavation under different conditions simulating by model test on existing tunnel[J]. Subgrade Engineering, 2015(6): 151-155.
[25] 魏纲, 张鑫海, 林心蓓, 等. 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644. WEI Gang, ZHANG Xinhai, LIN Xinbei, et al. Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation[J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[26] 中华人民共和国住房和城乡建设部. 城市轨道交通结构安全保护技术规范:CJJ/T 202—2013[S]. 北京:中国建筑工业出版社, 2014.
[27] 李鹏飞,周烨,伍冬. 隧道围岩压力计算方法及其适用范围[J].中国铁道科学, 2013, 34(6): 55-60. Ll Pengfei, ZHOU Ye, WU Dong. Calculation methods for surrounding rock pressure and application scopes[J].China Railway Science, 2013, 34(6): 55-60.
[1] 孙超, 张光伟, 答武强, 余祖峰. 临山条件下大直径盾构隧道抗浮控制技术[J]. 隧道与地下工程灾害防治, 2024, 6(4): 27-37.
[2] 赵泽乾, 朱旻, 包小华, 杨春山, 陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[3] 黄阜,申勇斌,张敏,王勇涛,杨云强,朱睿. 基于PIV技术的浅埋暗挖施工扰动诱发地表塌陷模型试验研究[J]. 隧道与地下工程灾害防治, 2024, 6(3): 12-21.
[4] 王宏超,胡军,周永强,付晓东. 二次衬砌施作时机对盾构隧道纵向力学性能的影响分析[J]. 隧道与地下工程灾害防治, 2024, 6(2): 99-112.
[5] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[6] 孙齐昊, 舒计城, 范森, 柳献. 降水与回灌水抢险作用机制的试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(4): 33-46.
[7] 加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
[8] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[9] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[10] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[11] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[12] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[13] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[14] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[15] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn