Design and stability analysis of full-hall scaffolding for secondary lining in large-section shafts
ZHANG Xiaolong1, GUO Mingyao1, XIANG Yu2*
1. Shanghai Tunnel Engineering Rail Transit Design and Research Institute, Shanghai 200235, China; 2. School of Resource and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract: Aiming at the lack of systematic research on temporary support system design for secondary lining in large-section and deep shafts, this study investigated the feasibility and stability of the full-hall scaffolding method, using Shaft No. 3 of the Xiaping drainage system in Shenzhen as the engineering case. Based on standardized design codes, a scaffolding scheme and key reinforcement measures suitable for deep shafts were developed. A three-dimensional finite-element model of the disk-coupler steel-tube scaffold was established in MIDAS/CIVIL, incorporating typical construction load cases including concrete lateral pressure, structural self-weight, and operational loads. Member stresses, displacements, and linear buckling modes were analyzed. The model accuracy was validated using monitoring data. Results showed that under the maximum construction load, the vertical post exhibits a maximum axial stress of 34.72 MPa, the maximum displacement at the horizontal joint reaches 21.17 mm, and all modal critical load factors exceeded 4, satisfying the safety reserve requirements specified in current codes. The findings demonstrated methodological and practical innovations: the study not only filled the gap in research on the mechanical behavior and stability of full-hall scaffolding in deep-shaft conditions, but also provided technical references and engineering experience for the design and wider application of large-section temporary support systems in underground construction.
[1] 刘志强, 陈湘生, 蔡美峰, 等. 我国大直径钻井技术装备发展的挑战与思考[J]. 中国工程科学, 2022, 24(2): 132-139. LIU Zhiqiang, CHEN Xiangsheng, CAI Meifeng, et al. Challenges and thoughts on the development of large-diameter drilling technology and equipment[J]. Strategic Study of CAE, 2022, 24(2): 132-139. [2] 何贞俊, 王斌, 杨聿, 等. 市政排水系统中竖井研究及应用进展[J]. 中国给水排水, 2017, 33(10): 49-53. HE Zhenjun, WANG Bin, YANG Yu, et al. Review on vertical shaft in urban wastewater drainage system[J]. China Water & Wastewater, 2017, 33(10): 49-53. [3] 毛锦波, 赵红刚, 韩强, 等. 竖井地面预注浆帷幕安全厚度研究及其在隧道通风井中应用: 以天山胜利隧道4号通风竖井为例[J]. 隧道建设(中英文), 2024, 44(2): 266-273. MAO Jinbo, ZHAO Honggang, HAN Qiang, et al. Safe thickness of pregrouting curtain for vertical shaft ground and its application in tunnel ventilation shaft: a case study of No. 4 ventilation shaft of Tianshan Shengli Tunnel[J]. Tunnel Construction, 2024, 44(2): 266-273. [4] 赵兴东, 李洋洋, 张姝婧, 等. 超深井筒开挖扰动应力响应特征分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 19-28. ZHAO Xingdong, LI Yangyang, ZHANG Shujing, et al. Analysis and application of disturbance stress reaction mechanism of surrounding rock during sinking ultra-deep shaft[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(4): 19-28. [5] 张卜, 姬若愚, 钟紫蓝, 等. 穿越岩土交界面竖井结构水平地震损伤破坏模式[J]. 隧道与地下工程灾害防治, 2023, 5(3):27-40. ZHANG Bu, JI Ruoyu, ZHONG Zilan, et al. The damage and failure mode of shaft structures crossing the geotechnical interface under the horizontal excitation of earthquake motion[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3):27-40. [6] 赵东平, 吴楠, 李华, 等. 隧道超深竖井设计施工技术研究现状及展望[J]. 铁道勘察, 2022, 48(3): 10-16. ZHAO Dongping, WU Nan, LI Hua, et al. Research status and prospect of design and construction technology of ultra-deepshaft for tunnel[J]. Railway Investigation and Surveying, 2022, 48(3): 10-16. [7] 冷希乔, 严金秀, 韩瑀萱. 公路隧道深大竖井设计及施工方法探讨[J]. 公路, 2019, 64(8): 221-225. LENG Xiqiao, YAN Jinxiu, HAN Yuxuan. Exploration and discussion on deformation law and construction method of deep shaft of highway tunnel[J]. Highway, 2019, 64(8): 221-225. [8] 徐浚. 麦麦高铁超宽混凝土箱梁桥构造与施工[J]. 混凝土, 2019(9): 142-145. XU Jun. Structure of and construction method to super-wide concrete box girder bridge of mecca to medina high speed railway[J]. Concrete, 2019(9): 142-145. [9] 李仁飞. 某公路桥梁满堂支架现浇箱梁施工技术分析[J]. 交通科技与管理, 2024, 5(7):88-90. LI Renfei. Analysis of construction technology of cast-in-place box girder of a highway bridge with full-tower support[J]. Transportation Technology and Management, 2024, 5(7):88-90. [10] 冯晓楠, 刘朵, 张建东, 等. 碗扣式与盘扣式钢管支架综合性能对比分析[J]. 施工技术, 2018, 47(2): 73-76. FENG Xiaonan, LIU Duo, ZHANG Jiandong, et al. Comprehensive performance contrast of cuplok and disk lock steel tubular scaffold[J]. Construction Technology, 2018, 47(2): 73-76. [11] CHANDRANGSU T, RASMUSSEN K J R. Structural modelling of support scaffold systems[J]. Journal of Constructional Steel Research, 2011, 67(5): 866-875. [12] MITOULIS S A, TEGOS I A, STYLIANIDIS K C. Cost-effectiveness related to the earthquake resisting system of multi-span bridges[J]. Engineering Structures, 2010, 32(9): 2658-2671. [13] TEGOU S D, MITOULIS S A, TEGOS I A. An unconventional earthquake resistant abutment with transversely directed R/C walls[J]. Engineering Structures, 2010, 32(11): 3801-3816. [14] 章贝贝, 樊训良, 林京京, 等. 基于有限元的盘扣式钢管满堂支架稳定性研究分析[J]. 地基处理, 2020, 2(6): 492-496. ZHANG Beibei, FAN Xunliang, LIN Jingjing, et al. Stability of full-supported disc buckle steel pipe based on finite element[J]. Chinese Journal of Ground Improvement, 2020, 2(6): 492-496. [15] 郭子毅. 盘扣式满堂支架稳定性分析及安全风险评估研究[D]. 河北:河北工程大学, 2022: 68-70. GUO Ziyi. Study on stability analysis and safety risk assessment of disc-buckled full support[D]. Hebei:Hebei University of Engineering, 2022: 68-70. [16] 孙秋月. 碗扣式钢管满堂支架力学性能及稳定性试验研究[D]. 西安:长安大学,2018: 70-72. SUN Qiuyue. Experimental investigation on the mechanical behaviour and stability of full cuplock steel tubular scaffolding[D]. Xi'an: Chang'an University, 2018: 70-72. [17] 郗磊. 软弱地基上满堂式支架施工与地基沉降量预估方法探索现状[J]. 科技与创新, 2023(5): 95-97. XI Lei. Present situation of full-style support construction on soft foundation and exploration of foundation settlement prediction method[J]. Science and Technology & Innovation, 2023(5): 95-97. [18] 朱小京, 起朝鲜, 邹怀秀, 等. 现浇箱梁满堂支架湿软地基处理与承载力验算[J]. 施工技术, 2016, 45(增刊1): 311-313. ZHU Xiaojing, QI ChaoXian, ZOU Huaixiu, et al. Wet-soft foundation treatment and bearing capacity checking for construction of cast-in-situ box beams supported by full framing[J]. Construction Technology, 2016, 45(Suppl.1): 311-313. [19] 谢锐. 渐变大断面地铁隧道二衬施工技术[J]. 建筑技术开发,2021,48(19):33-35. XIE Rui. Construction technology of secondary lining of metro tunnel with gradual change and large section[J]. Building Technology Development, 2021, 48(19):33-35. [20] 祁海. 地铁车站满堂碗扣式支架门洞设计与施工[J]. 智能城市应用, 2022(5): 21-24. QI Hai. Design and construction of full hall bowl buckle support door openings in metro stations[J]. Smart City Application, 2022(5): 21-24. [21] 吕秋影. 泄洪系统深大渐变断面竖井二次衬砌施工技术[J]. 建筑技术开发, 2024, 51(5): 43-45. LYU Qiuying. Discussion on construction technology of vertical shaft lining for deep and large gradient sections in flood discharge systems[J]. Building Technology Development, 2024, 51(5): 43-45. [22] 刘书昊. 现浇井筒式地下立体车库逆作施工研究[D]. 石家庄:石家庄铁道大学,2024: 88-91. LIU Shuhao. Research on reverse construction for cast-in-place cylindrical underground automated parking garage[D]. Shijiazhuang: Shijiazhuang Tiedao Univeristy, 2024: 88-91. [23] 黄剑, 李伟, 陈鑫, 等. 模块化可移动支架施工技术的研究与应用[J]. 工程建设与设计, 2022(17): 173-175. HUANG Jian, LI Wei, CHEN Xin, et al. Research and application of modular movable support construction technology[J]. Construction & Design for Engineering, 2022(17): 173-175. [24] 中华人民共和国住房和城乡建设部. 建筑施工承插型盘扣式钢管脚手架安全技术标准:JGJ/T 231—2021[S].北京:中国建筑工业出版社, 2021: 9-13. [25] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012: 8-12. [26] 中华人民共和国住房和城乡建设部. 建筑施工临时支撑结构技术规范: JGJ 300—2013[S]. 北京: 中国建筑工业出版社, 2014: 21-28. [27] BŁAZIK-BOROWA E, ROBAK A, PIENKO M, et al. The measurement of axial forces in scaffolding standards[J]. Measurement, 2023, 223: 113770. [28] 中华人民共和国住房和城乡建设部. 建筑施工模板安全技术规范:JGJ 162—2023[S]. 北京:中国建筑工业出版社,2023: 13-14. [29] 中华人民共和国住房和城乡建设部. 建筑施工扣件式钢管脚手架安全技术规范:JGJ 166—2016[S].北京:中国建筑工业出版社, 2016: 13-19.